8,674 research outputs found
How Well Can You Tailor the Charge of Lipid Vesicles?
Knowledge and control of surface charge or potential is important for tailoring colloidal interactions. In this work, we compare widely used zeta potential (ζ) measurements of charged lipid vesicle surface potential to direct measurements using the surface force apparatus (SFA). Our measurements show good agreement between the two techniques. On varying the fraction of anionic lipids dimyristoylphosphatidylserine (DMPS) or dimyristoylphosphatidylglycerol (DMPG) mixed with zwitterionic dimyristoylphosphatidylcholine (DMPC) from 0 to 100 mol % we observed a near-linear increase in membrane surface charge or potential up to 20-30 mol % charged lipids beyond which charge saturation occurred in physiological (high) salt conditions. Similarly, in low salt concentrations, a linear increase in charge/potential was found but only up to ∼5-10 mol % charged lipids beyond which the surface charge or potential leveled off. While a lower degree of ionization is expected due to the lower dielectric constant (ε ∼ 4) of the lipid acyl chain environment, increasing intramembrane electrostatic repulsion between neighboring charged lipid head groups at higher charge loading contributes to charge suppression. Measured potentials in physiological salt solutions were consistent with predictions using the Gouy-Chapman-Stern-Grahame (GCSG) model of the electrical double layer with Langmuir binding of counterions, but in low salt conditions, the model significantly overestimated the surface charge/potential. The much lower ionization in low salt (maximum ∼1-2% of total lipids ionized) instead was consistent with counterion condensation at the bilayer surface which limited the charge that could be obtained. The strong interplay between membrane composition, lipid headgroup ionization, electrolyte concentration, and solution pH complicates exact prediction and tuning of membrane surface charge for applications. However, the theoretical frameworks used here can provide guidelines to understand this interplay and establish a range of achievable potentials for a system and predict the response to triggers like pH and salt concentration changes
Microwave fidelity studies by varying antenna coupling
The fidelity decay in a microwave billiard is considered, where the coupling
to an attached antenna is varied. The resulting quantity, coupling fidelity, is
experimentally studied for three different terminators of the varied antenna: a
hard wall reflection, an open wall reflection, and a 50 Ohm load, corresponding
to a totally open channel. The model description in terms of an effective
Hamiltonian with a complex coupling constant is given. Quantitative agreement
is found with the theory obtained from a modified VWZ approach [Verbaarschot et
al, Phys. Rep. 129, 367 (1985)].Comment: 9 pages 5 figur
Preliminary Results of Aerodynamic Heating Studies on the X-15 Airplane
Aerodynamic heating analysis of X-15 aircraft in fligh
On the theory of cavities with point-like perturbations. Part I: General theory
The theoretical interpretation of measurements of "wavefunctions" and spectra
in electromagnetic cavities excited by antennas is considered. Assuming that
the characteristic wavelength of the field inside the cavity is much larger
than the radius of the antenna, we describe antennas as "point-like
perturbations". This approach strongly simplifies the problem reducing the
whole information on the antenna to four effective constants. In the framework
of this approach we overcame the divergency of series of the phenomenological
scattering theory and justify assumptions lying at the heart of "wavefunction
measurements". This selfconsistent approach allowed us to go beyond the
one-pole approximation, in particular, to treat the experiments with
degenerated states. The central idea of the approach is to introduce
``renormalized'' Green function, which contains the information on boundary
reflections and has no singularity inside the cavity.Comment: 23 pages, 6 figure
Disordered graphene and boron nitride in a microwave tight-binding analog
Experiments on hexagonal graphene-like structures using microwave measuring
techniques are presented. The lowest transverse-electric resonance of coupled
dielectric disks sandwiched between two metallic plates establishes a
tight-binding configuration. The nearest-neighbor coupling approximation is
investigated in systems with few disks. Taking advantage of the high
flexibility of the disks positions, consequences of the disorder introduced in
the graphene lattice on the Dirac points are investigated. Using two different
types of disks, a boron-nitride-like structure (a hexagonal lattice with a
two-atom basis) is implemented, showing the appearance of a band gap.Comment: 12 pages, 14 figure
Tunable Fano Resonances in Transport through Microwave Billiards
We present a tunable microwave scattering device that allows the controlled
variation of Fano line shape parameters in transmission through quantum
billiards. Transport in this device is nearly fully coherent. By comparison
with quantum calculations, employing the modular recursive Green's-function
method, the scattering wave function and the degree of residual decoherence can
be determined. The parametric variation of Fano line shapes in terms of
interacting resonances is analyzed.Comment: 5 pages, 4 figures, submitted to Phys. Rev.
1D quantum models with correlated disorder vs. classical oscillators with coloured noise
We perform an analytical study of the correspondence between a classical
oscillator with frequency perturbed by a coloured noise and the one-dimensional
Anderson-type model with correlated diagonal disorder. It is rigorously shown
that localisation of electronic states in the quantum model corresponds to
exponential divergence of nearby trajectories of the classical random
oscillator. We discuss the relation between the localisation length for the
quantum model and the rate of energy growth for the stochastic oscillator.
Finally, we examine the problem of electron transmission through a finite
disordered barrier by considering the evolution of the classical oscillator.Comment: 23 pages, LaTeX fil
Recommended from our members
A fixed-target platform for serial femtosecond crystallography in a hydrated environment.
For serial femtosecond crystallography at X-ray free-electron lasers, which entails collection of single-pulse diffraction patterns from a constantly refreshed supply of microcrystalline sample, delivery of the sample into the X-ray beam path while maintaining low background remains a technical challenge for some experiments, especially where this methodology is applied to relatively low-ordered samples or those difficult to purify and crystallize in large quantities. This work demonstrates a scheme to encapsulate biological samples using polymer thin films and graphene to maintain sample hydration in vacuum conditions. The encapsulated sample is delivered into the X-ray beam on fixed targets for rapid scanning using the Roadrunner fixed-target system towards a long-term goal of low-background measurements on weakly diffracting samples. As a proof of principle, we used microcrystals of the 24 kDa rapid encystment protein (REP24) to provide a benchmark for polymer/graphene sandwich performance. The REP24 microcrystal unit cell obtained from our sandwiched in-vacuum sample was consistent with previously established unit-cell parameters and with those measured by us without encapsulation in humidified helium, indicating that the platform is robust against evaporative losses. While significant scattering from water was observed because of the sample-deposition method, the polymer/graphene sandwich itself was shown to contribute minimally to background scattering
Inhomogeneous losses and complexness of wave functions in chaotic cavities
In a two-dimensional microwave chaotic cavity Ohmic losses located at the contour of the cavity result in different broadenings of different modes. We provide an analytic description and establish the link between such an inhomogeneous damping and the complex (non-real) character of biorthogonal wave functions. This substantiates the corresponding recent experimental findings of Barthélemy et al. (Europhys. Lett., 70 (2005) 162)
- …
