2,166 research outputs found

    Monte Carlo simulations of air showers in atmospheric electric fields

    Get PDF
    The development of cosmic ray air showers can be influenced by atmospheric electric fields. Under fair weather conditions these fields are small, but the strong fields inside thunderstorms can have a significant effect on the electromagnetic component of a shower. Understanding this effect is particularly important for radio detection of air showers, since the radio emission is produced by the shower electrons and positrons. We perform Monte Carlo simulations to calculate the effects of different electric field configurations on the shower development. We find that the electric field becomes important for values of the order of 1 kV/cm. Not only can the energy distribution of electrons and positrons change significantly for such field strengths, it is also possible that runaway electron breakdown occurs at high altitudes, which is an important effect in lightning initiation.Comment: 24 pages, 19 figures, accepted for publication in Astroparticle Physic

    Spatially and Spectrally Resolved Observations of a Zebra Pattern in Solar Decimetric Radio Burst

    Full text link
    We present the first interferometric observation of a zebra-pattern radio burst with simultaneous high spectral (~ 1 MHz) and high time (20 ms) resolution. The Frequency-Agile Solar Radiotelescope (FASR) Subsystem Testbed (FST) and the Owens Valley Solar Array (OVSA) were used in parallel to observe the X1.5 flare on 14 December 2006. By using OVSA to calibrate the FST the source position of the zebra pattern can be located on the solar disk. With the help of multi-wavelength observations and a nonlinear force-free field (NLFFF) extrapolation, the zebra source is explored in relation to the magnetic field configuration. New constraints are placed on the source size and position as a function of frequency and time. We conclude that the zebra burst is consistent with a double-plasma resonance (DPR) model in which the radio emission occurs in resonance layers where the upper hybrid frequency is harmonically related to the electron cyclotron frequency in a coronal magnetic loop.Comment: Accepted for publication in Ap

    Duurzaam doenderzoek in de zeeuwse delta : ecosysteemdiensten in de praktijk : deelresultaat 1 : analyse van landschappen resulterend in een overzicht van ecosysteemdiensten in de provincie Zeeland

    Get PDF
    Een ruimtelijke inventarisatie van ecosysteemdiensten waaruit blijkt wie de potentiële gebruikers zijn van ecosysteemdiensten (zoals: voedselproductie, energieproductie, drinkwaterproductie; waterberging, koolstofvastlegging, klimaatbeheersing, plaagwering; recreatie en leefbaarheid

    The Three Dimensional Structure of EUV Accretion Regions in AM Herculis Stars: Modeling of EUV Photometric and Spectroscopic Observations

    Get PDF
    We have developed a model of the high-energy accretion region for magnetic cataclysmic variables and applied it to {\it Extreme Ultraviolet Explorer} observations of 10 AM Herculis type systems. The major features of the EUV light curves are well described by the model. The light curves exhibit a large variety of features such as eclipses of the accretion region by the secondary star and the accretion stream, and dips caused by material very close to the accretion region. While all the observed features of the light curves are highly dependent on viewing geometry, none of the light curves are consistent with a flat, circular accretion spot whose lightcurve would vary solely from projection effects. The accretion region immediately above the WD surface is a source of EUV radiation caused by either a vertical extent to the accretion spot, or Compton scattering off electrons in the accretion column, or, very likely, both. Our model yields spot sizes averaging 0.06 RWD_{WD}, or f1×103f \sim 1 \times 10^{-3} the WD surface area, and average spot heights of 0.023 RWD_{WD}. Spectra extracted during broad dip phases are softer than spectra during the out-of-dip phases. This spectral ratio measurement leads to the conclusion that Compton scattering, some absorption by a warm absorber, geometric effects, an asymmetric temperature structure in the accretion region and an asymmetric density structure of the accretion columnare all important components needed to fully explain the data. Spectra extracted at phases where the accretion spot is hidden behind the limb of the WD, but with the accretion column immediately above the spot still visible, show no evidence of emission features characteristic of a hot plasma.Comment: 30 Pages, 11 Figure

    GALEX, Optical and IR Light Curves of MQ Dra: UV Excesses at Low Accretion Rates

    Full text link
    Ultraviolet light curves constructed from NUV and FUV detectors on GALEX reveal large amplitude variations during the orbital period of the Low Accretion Rate Polar MQ Dra (SDSSJ1553+55). This unexpected variation from a UV source is similar to that seen and discussed in the Polar EF Eri during its low state of accretion, even though the accretion rate in MQ Dra is an order of magnitude lower than even the low state of EF Eri. The similarity in phasing of the UV and optical light curves in MQ Dra imply a similar location for the source of light. We explore the possibilities of hot spots and cyclotron emission with simple models fit to the UV, optical and IR light curves of MQ Dra. To match the GALEX light curves with a single temperature circular hot spot requires different sizes of spots for the NUV and FUV, while a cyclotron model that can produce the optical harmonics with a magnetic field near 60 MG requires multipoles with fields > 200 MG to match the UV fluxes.Comment: accepted for ApJ; 15 pages, 7 tables, 8 fig

    Towards embedded control for resonant scanning MEMS micromirror

    Get PDF
    This paper describes the design and realization of an electrostatic actuated MEMS mirror operating at a resonance frequency of 23.5 KHz with a PLL feedback loop. The design is based upon a thorough understanding of the (non-linear) dynamical behavior of the mirror. Using an external position sensitive device (PSD) the proper working of the PLL is demonstrated. Next we study the possibility to replace the PSD sensor with an embedded capacitive phase-angle sensor. We show measurements of capacitance changes with large parasitic influences while actuating the mirror in a feed forward mode. This demonstrates the feasibility of a fully embedded control for a resonant scanning MEMS mirror. Keywords: MEMS micromirror; laser display; raster scanning, capacitive tilt-angle sensor; PLL\ud \u

    Duurzaam doenderzoek in de zeeuwse delta : ecosysteemdiensten in de praktijk : deelresultaat 2 : ecosysteemdienstenbenuttingskaart

    Get PDF
    Een ruimtelijke inventarisatie van ecosysteemdiensten waaruit blijkt wie de potentiële gebruikers zijn van ecosysteemdiensten (zoals: voedselproductie, energieproductie, drinkwaterproductie; waterberging, koolstofvastlegging, klimaatbeheersing, plaagwering; recreatie en leefbaarheid

    Cyclotron modeling phase-resolved infrared spectroscopy of polars I: EF Eridani

    Full text link
    We present phase-resolved low resolution infrared spectra of the polar EF Eridani obtained over a period of 2 years with SPEX on the IRTF. The spectra, covering the wavelength range 0.8 to 2.4 microns, are dominated by cyclotron emission at all phases. We use a ``Constant Lambda'' prescription to attempt to model the changing cyclotron features seen in the spectra. A single cyclotron emission component with B = 12.6 MG, and a plasma temperature of kT = 5.0 keV, does a reasonable job in matching the features seen in the H and K bands, but fails to completely reproduce the morphology shortward of 1.6 microns. We find that a two component model, where both components have similar properties, but whose contributions differ with viewing geometry, provides an excellent fit to the data. We discuss the implications of our models and compare them with previously published results. In addition, we show that a cyclotron model with similar properties to those used for modeling the infrared spectra, but with a field strength of B = 115 MG, can explain the GALEX observations of EF Eri.Comment: 25 pages, 5 figures, to appear in Ap
    corecore