1,159 research outputs found
A Comparative Framing Analysis of Embedded and Behind-the-Lines Reporting on the 2003 Iraq War
Although a contested position, we believe that reporters and editors frame the news in a way that reflects their personal feelings and newsroom culture (Kuypers, 1997, 2002, 2005; Cooper, in press). Audiences usually receive their political news from only a few press sources; rarely do they read the original statements of those being reported upon
The President and the Press: The Framing of George W. Bush’s Speech to the United Nations
In this essay, we provide a brief overview of how frames work, discuss the relationship of frames to the news media, and perform a qualitatively based, comparative framing analysis of President Bush’s speech to the United Nations and the mainstream American press response that followed. Findings suggest that by the end of formal military operations in Afghanistan, the press was increasingly framing its reports in such a way that President Bush’s public statements were inaccurately transmitted to the public at large. Three key findings are advanced: one, the press depicted the Bush administration as an enemy of civil liberties; two, hard news stories echoed the positions generated by editorials and opinion essays; three, as early as eight weeks after 9/11, the press was actively contesting the meaning of the War on Terror. Also discussed is the nature of the War on Terror as a master frame
Simulating the global distribution of nitrogen isotopes in the ocean
We present a new nitrogen isotope model incorporated into the three-dimensional ocean component of a global Earth system climate model designed for millennial timescale simulations. The model includes prognostic tracers for the two stable nitrogen isotopes, 14N and 15N, in the nitrate (NO3−), phytoplankton, zooplankton, and detritus variables of the marine ecosystem model. The isotope effects of algal NO3− uptake, nitrogen fixation, water column denitrification, and zooplankton excretion are considered as well as the removal of NO3− by sedimentary denitrification. A global database of δ15NO3− observations is compiled from previous studies and compared to the model results on a regional basis where sufficient observations exist. The model is able to qualitatively and quantitatively reproduce many of the observed patterns such as high subsurface values in water column denitrification zones and the meridional and vertical gradients in the Southern Ocean. The observed pronounced subsurface minimum in the Atlantic is underestimated by the model presumably owing to too little simulated nitrogen fixation there. Sensitivity experiments reveal that algal NO3− uptake, nitrogen fixation, and water column denitrification have the strongest effects on the simulated distribution of nitrogen isotopes, whereas the effect from zooplankton excretion is weaker. Both water column and sedimentary denitrification also have important indirect effects on the nitrogen isotope distribution by reducing the fixed nitrogen inventory, which creates an ecological niche for nitrogen fixers and, thus, stimulates additional N2 fixation in the model. Important model deficiencies are identified, and strategies for future improvement and possibilities for model application are outlined
George W. Bush, the American Press, and the Initial Framing of the War on Terror after 9/11
President George W. Bush\u27s speech to the General Assembly of the United Nations on November I 0, 200 I, marks an important moment in the history of the War on Terror. 1 It followed closely upon the joint U.S.-Northern Alliance military capture of Mazari Sarif, Afghanistan, which significantly disrupted the Taliban\u27s operations and arguably marked the official beginning of America\u27s War on Terror. As President Bush stated, The time for sympathy has now passed; the time for action has now arrived. 2 In some ways, the speech offered nothing new. It reiterated words and ideas that the president frequently used to label elements of the situation following the 9/11 attacks
Nitric oxide turnover in permeable river sediment
We measured nitric oxide (NO) microprofiles in relation to oxygen (O-2) and all major dissolved N-species (ammonium, nitrate, nitrite, and nitrous oxide [N2O]) in a permeable, freshwater sediment (River Weser, Germany). NO reaches peak concentrations of 0.13 mu mol L-1 in the oxic zone and is consumed in the oxic-anoxic transition zone. Apparently, NO is produced by ammonia oxidizers under oxic conditions and consumed by denitrification under microoxic conditions. Experimental percolation of sediment cores with aerated surface water resulted in an initial rate of NO production that was 12 times higher than the net NO production rate in steady state. This initial NO production rate is in the same range as the net ammonia oxidation rate, indicating that NO is transiently the main product of ammonia oxidizers. Stable isotope labeling experiments with the N-15-labeled chemical NO donor S-nitroso-N-acetylpenicillamine (SNAP) (1) confirmed denitrification as the main NO consumption pathway, with N2O as its major product, (2) showed that denitrification combines one free NO molecule with one NO molecule formed from nitrite to produce N2O, and (3) suggested that NO inhibits N2O reduction
Doubling of marine dinitrogen-fixation rates based on direct measurements
Biological dinitrogen fixation provides the largest input of nitrogen to the oceans, therefore exerting important control on the ocean’s nitrogen inventory and primary productivity. Nitrogen-isotope data fromocean sediments suggest that the marine-nitrogen inventory has been balanced for the past 3,000 years (ref. 4). Producing a balanced marine-nitrogenbudget based on direct measurements has proved difficult, however, with nitrogen loss exceeding the gain from dinitrogen fixation by approximately 200 TgNyr-1 (refs 5, 6). Here we present data from the Atlantic Ocean and show that the most widely used method of measuring oceanic N2-fixation rates underestimates the contribution of N2-fixing microorganisms (diazotrophs) relative to a newly developed method. Using molecular techniques to quantify the abundance of specific clades of diazotrophs in parallel with rates of 15N2 incorporation into particulate organic matter, we suggest that the difference between N2-fixation rates measured with the established method and those measured with the new method8 can be related to the composition of the diazotrophic community.
Our data show that in areas dominated by Trichodesmium, the established method underestimatesN2-fixation rates by an averageof 62%. We also find that the newly developed method yields N2-fixation rates more than six times higher than those from the established method when unicellular, symbiotic cyanobacteria and c-proteobacteria dominate the diazotrophic community. On the basis of average areal rates measured over the Atlantic Ocean, we calculated basin-wide N2-fixation rates of 14+/-1TgNyr-1 and 24+/-1TgNyr-1 for the established and new methods, respectively. If our findings can be extrapolated to other ocean basins, this suggests that the global marine N2-fixation rate derived from direct measurements may increase from 103+/-8TgNyr-1 to 177+/-8TgNyr-1, and that the contribution of N2 fixers other than Trichodesmium is much more significant than was
previously thought
Mechanisms of transient nitric oxide and nitrous oxide production in a complex biofilm
Nitric oxide (NO) and nitrous oxide (N2O) are formed during N-cycling in complex microbial communities in response to fluctuating molecular oxygen (O2) and nitrite (NO2−) concentrations. Until now, the formation of NO and N2O in microbial communities has been measured with low spatial and temporal resolution, which hampered elucidation of the turnover pathways and their regulation. In this study, we combined microsensor measurements with metabolic modeling to investigate the functional response of a complex biofilm with nitrifying and denitrifying activity to variations in O2 and NO2−. In steady state, NO and N2O formation was detected if ammonium (NH4+) was present under oxic conditions and if NO2− was present under anoxic conditions. Thus, NO and N2O are produced by ammonia-oxidizing bacteria (AOB) under oxic conditions and by heterotrophic denitrifiers under anoxic conditions. NO and N2O formation by AOB occurred at fully oxic conditions if NO2− concentrations were high. Modeling showed that steady-state NO concentrations are controlled by the affinity of NO-consuming processes to NO. Transient accumulation of NO and N2O occurred upon O2 removal from, or NO2− addition to, the medium only if NH4+ was present under oxic conditions or if NO2− was already present under anoxic conditions. This showed that AOB and heterotrophic denitrifiers need to be metabolically active to respond with instantaneous NO and N2O production upon perturbations. Transiently accumulated NO and N2O decreased rapidly after their formation, indicating a direct effect of NO on the metabolism. By fitting model results to measurements, the kinetic relationships in the model were extended with dynamic parameters to predict transient NO release from perturbed ecosystems
The rate and fate of N-2 and C fixation by marine diatom-diazotroph symbioses
N-2 fixation constitutes an important new nitrogen source in the open sea. One group of filamentous N-2 fixing cyanobacteria (Richelia intracellularis, hereafter Richelia) form symbiosis with a few genera of diatoms. High rates of N-2 fixation and carbon (C) fixation have been measured in the presence of diatom-Richelia symbioses. However, it is unknown how partners coordinate C fixation and how the symbiont sustains high rates of N-2 fixation. Here, both the N-2 and C fixation in wild diatom-Richelia populations are reported. Inhibitor experiments designed to inhibit host photosynthesis, resulted in lower estimated growth and depressed C and N-2 fixation, suggesting that despite the symbionts ability to fix their own C, they must still rely on their respective hosts for C. Single cell analysis indicated that up to 22% of assimilated C in the symbiont is derived from the host, whereas 78-91% of the host N is supplied from their symbionts. A size-dependent relationship is identified where larger cells have higher N-2 and C fixation, and only N-2 fixation was light dependent. Using the single cell measures, the N-rich phycosphere surrounding these symbioses was estimated and contributes directly and rapidly to the surface ocean rather than the mesopelagic, even at high estimated sinking velocities (<10 m d(-1)). Several eco-physiological parameters necessary for incorporating symbiotic N-2 fixing populations into larger basin scale biogeochemical models (i.e., N and C cycles) are provided
Dose-related effects of MDMA on psychomotor function and mood before, during, and after a night of sleep loss
INTRODUCTION: 3,4-methylenedioxymethamphetamine (MDMA) is known to improve psychomotor function and mood when measured during daytime. However, MDMA users tend to take this drug at dance parties while staying awake for prolonged periods of time.SUBJECTS AND METHODS: This study was designed to assess dose-related residual effects of MDMA on psychomotor function and mood after a night without sleep. Sixteen recreational MDMA users received single doses of 25, 50, and 100 mg MDMA in a randomized, double-blind, placebo-controlled cross-over study.RESULTS: Results showed that sleep loss significantly impaired psychomotor function. MDMA generally did not affect performance but did improve rapid information processing at the highest dose in the morning after administration. In the evening, MDMA also increased subjective ratings of positive mood at every dose and subjective arousal at the highest dose. These subjective effects were no longer present after a night of sleep loss.DISCUSSION: It is concluded that sleep deprivation impairs psychomotor function and that stimulant effects of MDMA are not sufficient to compensate for this impairment.</p
Passive 2.45 GHz TDMA based Multi-Sensor Wireless Temperature Monitoring System: Results and Design Considerations
- …
