5,948 research outputs found
A trapped mercury 199 ion frequency standard
Mercury 199 ions confined in an RF quadrupole trap and optically pumped by mercury 202 ion resonance light are investigated as the basis for a high performance frequency standard with commercial possibilities. Results achieved and estimates of the potential performance of such a standard are given
The Angular Resolution of Space-Based Gravitational Wave Detectors
Proposed space-based gravitational wave antennas involve satellites arrayed
either in an equilateral triangle around the earth in the ecliptic plane (the
ecliptic-plane option) or in an equilateral triangle orbiting the sun in such a
way that the plane of the triangle is tilted at 60 degrees relative to the
ecliptic (the precessing-plane option). In this paper, we explore the angular
resolution of these two classes of detectors for two kinds of sources
(essentially monochromatic compact binaries and coalescing massive-black-hole
binaries) using time-domain expressions for the gravitational waveform that are
accurate to 4/2 PN order. Our results display an interesting effect not
previously reported in the literature, and underline the importance of
including the higher-order PN terms in the waveform when predicting the angular
resolution of ecliptic-plane detector arrays.Comment: 13 pages, 6 figures, submitted to Phys Rev D. The current version
corrects an error in our original paper and adds some clarifying language.
The error also required correction of the graphs now shown in Figures 3
through
Towards the solution of the relativistic gravitational radiation reaction problem for binary black holes
Here we present the results of applying the generalized Riemann zeta-function
regularization method to the gravitational radiation reaction problem. We
analyze in detail the headon collision of two nonspinning black holes with
extreme mass ratio. The resulting reaction force on the smaller hole is
repulsive. We discuss the possible extensions of these method to generic orbits
and spinning black holes. The determination of corrected trajectories allows to
add second perturbative corrections with the consequent increase in the
accuracy of computed waveforms.Comment: Contribution to the Proceedings of the 3rd LISA Symposiu
Macular Bioaccelerometers on Earth and in Space
Space flight offers the opportunity to study linear bioaccelerometers (vestibular maculas) in the virtual absence of a primary stimulus, gravitational acceleration. Macular research in space is particularly important to NASA because the bioaccelerometers are proving to be weighted neural networks in which information is distributed for parallel processing. Neural networks are plastic and highly adaptive to new environments. Combined morphological-physiological studies of maculas fixed in space and following flight should reveal macular adaptive responses to microgravity, and their time-course. Ground-based research, already begun, using computer-assisted, 3-dimensional reconstruction of macular terminal fields will lead to development of computer models of functioning maculas. This research should continue in conjunction with physiological studies, including work with multichannel electrodes. The results of such a combined effort could usher in a new era in understanding vestibular function on Earth and in space. They can also provide a rational basis for counter-measures to space motion sickness, which may prove troublesome as space voyager encounter new gravitational fields on planets, or must re-adapt to 1 g upon return to earth
LISA Response Function and Parameter Estimation
We investigate the response function of LISA and consider the adequacy of its
commonly used approximation in the high-frequency range of the observational
band. We concentrate on monochromatic binary systems, such as white dwarf
binaries. We find that above a few mHz the approxmation starts becoming
increasingly inaccurate. The transfer function introduces additional amplitude
and phase modulations in the measured signal that influence parameter estmation
and, if not properly accounted for, lead to losses of signal-to-noise ratio.Comment: 4 pages, 2 figures, amaldi 5 conference proceeding
Angular Resolution of the LISA Gravitational Wave Detector
We calculate the angular resolution of the planned LISA detector, a
space-based laser interferometer for measuring low-frequency gravitational
waves from galactic and extragalactic sources. LISA is not a pointed
instrument; it is an all-sky monitor with a quadrupolar beam pattern. LISA will
measure simultaneously both polarization components of incoming gravitational
waves, so the data will consist of two time series. All physical properties of
the source, including its position, must be extracted from these time series.
LISA's angular resolution is therefore not a fixed quantity, but rather depends
on the type of signal and on how much other information must be extracted.
Information about the source position will be encoded in the measured signal in
three ways: 1) through the relative amplitudes and phases of the two
polarization components, 2) through the periodic Doppler shift imposed on the
signal by the detector's motion around the Sun, and 3) through the further
modulation of the signal caused by the detector's time-varying orientation. We
derive the basic formulae required to calculate the LISA's angular resolution
for a given source. We then evaluate for
two sources of particular interest: monchromatic sources and mergers of
supermassive black holes. For these two types of sources, we calculate (in the
high signal-to-noise approximation) the full variance-covariance matrix, which
gives the accuracy to which all source parameters can be measured. Since our
results on LISA's angular resolution depend mainly on gross features of the
detector geometry, orbit, and noise curve, we expect these results to be fairly
insensitive to modest changes in detector design that may occur between now and
launch. We also expect that our calculations could be easily modified to apply
to a modified design.Comment: 15 pages, 5 figures, RevTex 3.0 fil
Solving the Darwin problem in the first post-Newtonian approximation of general relativity
We analytically calculate the equilibrium sequence of the corotating binary
stars of incompressible fluid in the first post-Newtonian(PN) approximation of
general relativity. By calculating the total energy and total angular momentum
of the system as a function of the orbital separation, we investigate the
innermost stable circular orbit for corotating binary(we call it ISCCO). It is
found that by the first PN effect, the orbital separation of the binary at the
ISCCO becomes small with increase of the compactness of each star, and as a
result, the orbital angular velocity at the ISCCO increases. These behaviors
agree with previous numerical works.Comment: 33 pages, revtex, 4 figures(eps), accepted for publication in Phys.
Rev.
The Effect of the LISA Response Function on Observations of Monochromatic Sources
The Laser Interferometer Space Antenna (LISA) is expected to provide the
largest observational sample of binary systems of faint sub-solar mass compact
objects, in particular white-dwarfs, whose radiation is monochromatic over most
of the LISA observational window. Current astrophysical estimates suggest that
the instrument will be able to resolve about 10000 such systems, with a large
fraction of them at frequencies above 3 mHz, where the wavelength of
gravitational waves becomes comparable to or shorter than the LISA arm-length.
This affects the structure of the so-called LISA transfer function which cannot
be treated as constant in this frequency range: it introduces characteristic
phase and amplitude modulations that depend on the source location in the sky
and the emission frequency. Here we investigate the effect of the LISA transfer
function on detection and parameter estimation for monochromatic sources. For
signal detection we show that filters constructed by approximating the transfer
function as a constant (long wavelength approximation) introduce a negligible
loss of signal-to-noise ratio -- the fitting factor always exceeds 0.97 -- for
f below 10mHz, therefore in a frequency range where one would actually expect
the approximation to fail. For parameter estimation, we conclude that in the
range 3mHz to 30mHz the errors associated with parameter measurements differ
from about 5% up to a factor of 10 (depending on the actual source parameters
and emission frequency) with respect to those computed using the long
wavelength approximation.Comment: replacement version with typos correcte
Recovering the stationary phase condition for accurately obtaining scattering and tunneling times
The stationary phase method is often employed for computing tunneling {\em
phase} times of analytically-continuous {\em gaussian} or infinite-bandwidth
step pulses which collide with a potential barrier. The indiscriminate
utilization of this method without considering the barrier boundary effects
leads to some misconceptions in the interpretation of the phase times. After
reexamining the above barrier diffusion problem where we notice the wave packet
collision necessarily leads to the possibility of multiple reflected and
transmitted wave packets, we study the phase times for tunneling/reflecting
particles in a framework where an idea of multiple wave packet decomposition is
recovered. To partially overcome the analytical incongruities which rise up
when tunneling phase time expressions are obtained, we present a theoretical
exercise involving a symmetrical collision between two identical wave packets
and a one dimensional squared potential barrier where the scattered wave
packets can be recomposed by summing the amplitudes of simultaneously reflected
and transmitted waves.Comment: 32 pages, 5 figures, 1 tabl
Gravitational Wave Chirp Search: Economization of PN Matched Filter Bank via Cardinal Interpolation
The final inspiral phase in the evolution of a compact binary consisting of
black holes and/or neutron stars is among the most probable events that a
network of ground-based interferometric gravitational wave detectors is likely
to observe. Gravitational radiation emitted during this phase will have to be
dug out of noise by matched-filtering (correlating) the detector output with a
bank of several templates, making the computational resources required
quite demanding, though not formidable. We propose an interpolation method for
evaluating the correlation between template waveforms and the detector output
and show that the method is effective in substantially reducing the number of
templates required. Indeed, the number of templates needed could be a factor
smaller than required by the usual approach, when the minimal overlap
between the template bank and an arbitrary signal (the so-called {\it minimal
match}) is 0.97. The method is amenable to easy implementation, and the various
detector projects might benefit by adopting it to reduce the computational
costs of inspiraling neutron star and black hole binary search.Comment: scheduled for publicatin on Phys. Rev. D 6
- …
