62,612 research outputs found
Kinetics of Open Circuit Processes in Undischarged Li/SOC12 Cells
The kinetics of the heat producing processes in undischarged Li/SOCl2 cells under open circuit conditions were measured by heat-conduction microcalorimetry. The cells studied, Honeywell type G2666 reserve cells, were activated as needed and the rate of open circuit heat output determined as a function of time since activation and temperature. The results at each temperature can be described by an equation of the form q = Bktx where q is the rate of heat output, B is the heat produced per unit of reaction, k and x are empirical constants, and t is the time since activation. Both x and k are found to be functions of temperature; therefore, accelerated testing at elevated temperatures is probably not valid for these cells until the processes involved are better understood
Particle parameter analyzing system
An X-Y plotter circuit apparatus is described which displays an input pulse representing particle parameter information, that would ordinarily appear on the screen of an oscilloscope as a rectangular pulse, as a single dot positioned on the screen where the upper right hand corner of the input pulse would have appeared. If another event occurs, and it is desired to display this event, the apparatus is provided to replace the dot with a short horizontal line
Geometrically necessary dislocation densities in olivine obtained using high-angular resolution electron backscatter diffraction
© 2016 The AuthorsDislocations in geological minerals are fundamental to the creep processes that control large-scale geodynamic phenomena. However, techniques to quantify their densities, distributions, and types over critical subgrain to polycrystal length scales are limited. The recent advent of high-angular resolution electron backscatter diffraction (HR-EBSD), based on diffraction pattern cross-correlation, offers a powerful new approach that has been utilised to analyse dislocation densities in the materials sciences. In particular, HR-EBSD yields significantly better angular resolution (<0.01°) than conventional EBSD (~0.5°), allowing very low dislocation densities to be analysed. We develop the application of HR-EBSD to olivine, the dominant mineral in Earths upper mantle by testing (1) different inversion methods for estimating geometrically necessary dislocation (GND) densities, (2) the sensitivity of the method under a range of data acquisition settings, and (3) the ability of the technique to resolve a variety of olivine dislocation structures. The relatively low crystal symmetry (orthorhombic) and few slip systems in olivine result in well constrained GND density estimates. The GND density noise floor is inversely proportional to map step size, such that datasets can be optimised for analysing either short wavelength, high density structures (e.g. subgrain boundaries) or long wavelength, low amplitude orientation gradients. Comparison to conventional images of decorated dislocations demonstrates that HR-EBSD can characterise the dislocation distribution and reveal additional structure not captured by the decoration technique. HR-EBSD therefore provides a highly effective method for analysing dislocations in olivine and determining their role in accommodating macroscopic deformation
A solid-state low-noise preamplifier
Solid state low noise preamplifier for particle detector of electrostatic accelerator syste
Onset of Localization in Heterogeneous Interfacial Failure
We study numerically the failure of an interface joining two elastic
materials under load using a fiber bundle model connected to an elastic half
space. We find that the breakdown process follows the equal load sharing fiber
bundle model without any detectable spatial correlations between the positions
of the failing fibers until localization sets in. The onset of localization is
an instability, not a phase transition. Depending on the elastic constant
describing the elastic half space, localization sets in before or after the
critical load causing the interface to fail completely, is reached. There is a
crossover between failure due to localization or failure without spatial
correlations when tuning the elastic constant, not a phase transition. Contrary
to earlier claims based on models different from ours, we find that a finite
fraction of fibers must fail before the critical load is attained, even in the
extreme localization regime, i.e.\ for very small elastic constant. We
furthermore find that the critical load remains finite for all values of the
elastic constant in the limit of an infinitely large system.Comment: 4 pages, 5 figure
Thermodynamics and phase behavior of the lamellar Zwanzig model
Binary mixtures of lamellar colloids represented by hard platelets are
studied within a generalization of the Zwanzig model for rods, whereby the
square cuboids can take only three orientations along the , or axes.
The free energy is calculated within Rosenfeld's ''Fundamental Measure Theory''
(FMT) adapted to the present model. In the one-component limit, the model
exhibits the expected isotropic to nematic phase transition, which narrows as
the aspect ratio ( is the width and the thickness of the
platelets) increases. In the binary case the competition between nematic
ordering and depletion-induced segregation leads to rich phase behaviour.Comment: 9 pages, 6 figure
Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD). Volume 4: IPAD system design
The computing system design of IPAD is described and the requirements which form the basis for the system design are discussed. The system is presented in terms of a functional design description and technical design specifications. The functional design specifications give the detailed description of the system design using top-down structured programming methodology. Human behavioral characteristics, which specify the system design at the user interface, security considerations, and standards for system design, implementation, and maintenance are also part of the technical design specifications. Detailed specifications of the two most common computing system types in use by the major aerospace companies which could support the IPAD system design are presented. The report of a study to investigate migration of IPAD software between the two candidate 3rd generation host computing systems and from these systems to a 4th generation system is included
Four-way regulation of mosquito yolk protein precursor genes by juvenile hormone-, ecdysone-, nutrient-, and insulin-like peptide signaling pathways.
Anautogenous mosquito females require a meal of vertebrate blood in order to initiate the production of yolk protein precursors by the fat body. Yolk protein precursor gene expression is tightly repressed in a state-of-arrest before blood meal-related signals activate it and expression levels rise rapidly. The best understood example of yolk protein precursor gene regulation is the vitellogenin-A gene (vg) of the yellow fever mosquito Aedes aegypti. Vg-A is regulated by (1) juvenile hormone signaling, (2) the ecdysone-signaling cascade, (3) the nutrient sensitive target-of-rapamycin signaling pathway, and (4) the insulin-like peptide (ILP) signaling pathway. A plethora of new studies have refined our understanding of the regulation of yolk protein precursor genes since the last review on this topic in 2005 (Attardo et al., 2005). This review summarizes the role of these four signaling pathways in the regulation of vg-A and focuses upon new findings regarding the interplay between them on an organismal level
A Ka-band (32 GHz) beacon link experiment (KABLE) with Mars Observer
A proposal for a Ka-Band (32 GHz) Link Experiment (KABLE) with the Mars Observer mission was submitted to NASA. The experiment will rely on the fourth harmonic of the spacecraft X-band transmitter to generate a 33.6 GHz signal. The experiment will rely also on the Deep Space Network (DSN) receiving station equipped to simultaneously receive X- and Ka-band signals. The experiment will accurately measure the spacecraft-to-Earth telecommunication link performance at Ka-band and X-band (8.4 GHz)
The Influence of Canadian Investment on U.S. Residential Property Values
This study is an examination of the impact of foreign investors on an American residential real estate market. Point Roberts, Washington, a real estate market that is dominated by Canadians, is the focus of the analysis. Utilizing a ten-year database of home sales, the empirical analysis suggests that the Canadian/U.S. dollar exchange rate and market conditions in nearby Vancouver, British Columbia, strongly influence Point Roberts residential property price levels. A rising Canadian dollar seems to motivate increased demand for Point Roberts property by Canadian investors, for example. The sensitivity of real estate prices to exchange-rate changes appears to be a three-to-six-month lagged function. In general, it appears that a higher Canadian dollar will increase the Canadian demand for Point Roberts real estate which, in turn, leads to higher transaction prices. In addition, transaction prices in Point Roberts are slightly more volatile than are prices in the Vancouver market.
- …
