7,324 research outputs found
Design, Fabrication and Test of Composite Curved Frames for Helicopter Fuselage Structure
Aspects of curved beam effects and their importance in designing composite frame structures are discussed. The curved beam effect induces radial flange loadings which in turn causes flange curling. This curling increases the axial flange stresses and induces transverse bending. These effects are more important in composite structures due to their general inability to redistribute stresses by general yielding, such as in metal structures. A detailed finite element analysis was conducted and used in the design of composite curved frame specimens. Five specimens were statically tested and compared with predicted and test strains. The curved frame effects must be accurately accounted for to avoid premature fracture; finite element methods can accurately predict most of the stresses and no elastic relief from curved beam effects occurred in the composite frames tested. Finite element studies are presented for comparative curved beam effects on composite and metal frames
Test instrumentation evaluates electrostatic hazards in fluid system
RJ-1 fuel surface potential is measured with a probe to determine the degree of hazard originating from static electricity buildup in the hydraulic fluid. The probe is mounted in contact with the fluid surface and connected to an electrostatic voltmeter
Signatures of the chiral two-pion exchange electromagnetic currents in the 2H and 3He photodisintegration reactions
The recently derived long-range two-pion exchange (TPE) contributions to the
nuclear current operator which appear at next-to-leading order (NLO) of the
chiral expansion are used to describe electromagnetic processes. We study their
role in the photodisintegration of 2H and 3He and compare our predictions with
experimental data. The bound and scattering states are calculated using five
different parametrizations of the chiral next-to-next-to-leading order (N2LO)
nucleon-nucleon (NN) potential which allows us to estimate the theoretical
uncertainty at a given order in the chiral expansion. For some observables the
results are very close to the predictions based on the AV18 NN potential and
the current operator (partly) consistent with this force. In the most cases,
the addition of long-range TPE currents improved the description of the
experimental data.Comment: 11 pages, 6 figures (35 eps files
Electron spin quantum beats in positively charged quantum dots: nuclear field effects
We have studied the electron spin coherence in an ensemble of positively
charged InAs/GaAs quantum dots. In a transverse magnetic field, we show that
two main contributions must be taken into account to explain the damping of the
circular polarization oscillations. The first one is due to the nuclear field
fluctuations from dot to dot experienced by the electron spin. The second one
is due to the dispersion of the transverse electron Lande g-factor, due to the
inherent inhomogeneity of the system, and leads to a field dependent
contribution to the damping. We have developed a model taking into account both
contributions, which is in good agreement with the experimental data. This
enables us to extract the pure contribution to dephasing due to the nuclei.Comment: 10 pages, 6 figure
Experimental Predictions of The Functional Response of A Freshwater Fish
The functional response is the relationship between the feeding rate of an animal and its food density. It is reliant on two basic parameters; the volume searched for prey per unit time (searching rate) and the time taken to consume each prey item (handling time). As fish functional responses can be difficult to determine directly, it may be more feasible to measure their underlying behavioural parameters in controlled conditions and use these to predict the functional response. Here, we tested how accurately a Type II functional response model predicted the observed functional response of roach Rutilus rutilus, a visually foraging fish, and compared it with Type I functional response. Foraging experiments were performed by exposing fish in tank aquaria to a range of food densities, with their response captured using a two-camera videography system. This system was validated and was able to accurately measure fish behaviour in the aquaria, and enabled estimates of fish reaction distance, swimming speed (from which searching rate was calculated) and handling time to be measured. The parameterised Type II functional response model accurately predicted the observed functional response and was superior to the Type I model. These outputs suggest it will be possible to accurately measure behavioural parameters in other animal species and use these to predict the functional response in situations where it cannot be observed directly
Solution of classical stochastic one dimensional many-body systems
We propose a simple method that allows, in one dimension, to solve exactly a
wide class of classical stochastic many-body systems far from equilibrium. For
the sake of illustration and without loss of generality, we focus on a model
that describes the asymmetric diffusion of hard core particles in the presence
of an external source and instantaneous annihilation. Starting from a Master
equation formulation of the problem we show that the density and multi-point
correlation functions obey a closed set of integro-differential equations which
in turn can be solved numerically and/or analyticallyComment: 2 figure
Retrieval behavior and thermodynamic properties of symmetrically diluted Q-Ising neural networks
The retrieval behavior and thermodynamic properties of symmetrically diluted
Q-Ising neural networks are derived and studied in replica-symmetric mean-field
theory generalizing earlier works on either the fully connected or the
symmetrical extremely diluted network. Capacity-gain parameter phase diagrams
are obtained for the Q=3, Q=4 and state networks with uniformly
distributed patterns of low activity in order to search for the effects of a
gradual dilution of the synapses. It is shown that enlarged regions of
continuous changeover into a region of optimal performance are obtained for
finite stochastic noise and small but finite connectivity. The de
Almeida-Thouless lines of stability are obtained for arbitrary connectivity,
and the resulting phase diagrams are used to draw conclusions on the behavior
of symmetrically diluted networks with other pattern distributions of either
high or low activity.Comment: 21 pages, revte
Electron and Hole Spin Splitting and Photogalvanic Effect in Quantum Wells
A theory of the circular photogalvanic effect caused by spin splitting in
quantum wells is developed. Direct interband transitions between the hole and
electron size-quantized subbands are considered. It is shown that the
photocurrent value and direction depend strongly on the form of the spin-orbit
interaction. The currents induced by structure-, bulk-, and interface-inversion
asymmetry are investigated. The photocurrent excitation spectra caused by spin
splittings in both conduction and valence bands are calculated.Comment: 7 pages, 3 figure
On Matrix Product Ground States for Reaction-Diffusion Models
We discuss a new mechanism leading to a matrix product form for the
stationary state of one-dimensional stochastic models. The corresponding
algebra is quadratic and involves four different matrices. For the example of a
coagulation-decoagulation model explicit four-dimensional representations are
given and exact expressions for various physical quantities are recovered. We
also find the general structure of -point correlation functions at the phase
transition.Comment: LaTeX source, 7 pages, no figure
- …
