712 research outputs found

    Microstructural enrichment functions based on stochastic Wang tilings

    Full text link
    This paper presents an approach to constructing microstructural enrichment functions to local fields in non-periodic heterogeneous materials with applications in Partition of Unity and Hybrid Finite Element schemes. It is based on a concept of aperiodic tilings by the Wang tiles, designed to produce microstructures morphologically similar to original media and enrichment functions that satisfy the underlying governing equations. An appealing feature of this approach is that the enrichment functions are defined only on a small set of square tiles and extended to larger domains by an inexpensive stochastic tiling algorithm in a non-periodic manner. Feasibility of the proposed methodology is demonstrated on constructions of stress enrichment functions for two-dimensional mono-disperse particulate media.Comment: 27 pages, 12 figures; v2: completely re-written after the first revie

    Models, measurement and inference in epithelial tissue dynamics

    Get PDF
    The majority of solid tumours arise in epithelia and therefore much research effort has gone into investigating the growth, renewal and regulation of these tissues. Here we review different mathematical and computational approaches that have been used to model epithelia. We compare different models and describe future challenges that need to be overcome in order to fully exploit new data which present, for the first time, the real possibility for detailed model validation and comparison

    On the contact detection for contact-impact analysis in multibody systems

    Get PDF
    One of the most important and complex parts of the simulation of multibody systems with contact-impact involves the detection of the precise instant of impact. In general, the periods of contact are very small and, therefore, the selection of the time step for the integration of the time derivatives of the state variables plays a crucial role in the dynamics of multibody systems. The conservative approach is to use very small time steps throughout the analysis. However, this solution is not efficient from the computational view point. When variable time step integration algorithms are used and the pre-impact dynamics does not involve high-frequencies the integration algorithms may use larger time steps and the contact between two surfaces may start with initial penetrations that are artificially high. This fact leads either to a stall of the integration algorithm or to contact forces that are physically impossible which, in turn, lead to post-impact dynamics that is unrelated to the physical problem. The main purpose of this work is to present a general and comprehensive approach to automatically adjust the time step, in variable time step integration algorithms, in the vicinity of contact of multibody systems. The proposed methodology ensures that for any impact in a multibody system the time step of the integration is such that any initial penetration is below any prescribed threshold. In the case of the start of contact, and after a time step is complete, the numerical error control of the selected integration algorithm is forced to handle the physical criteria to accept/reject time steps in equal terms with the numerical error control that it normally uses. The main features of this approach are the simplicity of its computational implementation, its good computational efficiency and its ability to deal with the transitions between non contact and contact situations in multibody dynamics. A demonstration case provides the results that support the discussion and show the validity of the proposed methodology.Fundação para a Ciência e a Tecnologia (FCT

    HDG-NEFEM with Degree Adaptivity for Stokes Flows

    Get PDF
    This paper presents the first degree adaptive procedure able to directly use the geometry given by a CAD model. The technique uses a hybridisable discontinuous Galerkin discretisation combined with a NURBS-enhanced rationale, completely removing the uncertainty induced by a polynomial approximation of curved boundaries that is common within an isoparametric approach. The technique is compared against two strategies to perform degree adaptivity currently in use. This paper demonstrates, for the first time, that the most extended technique for degree adaptivity can easily lead to a non-reliable error estimator if no communication with CAD software is introduced whereas if the communication with the CAD is done, it results in a substantial computing time. The proposed technique encapsulates the CAD model in the simulation and is able to produce reliable error estimators irrespectively of the initial mesh used to start the adaptive process. Several numerical examples confirm the findings and demonstrate the superiority of the proposed technique. The paper also proposes a novel idea to test the implementation of high-order solvers where different degrees of approximation are used in different elements

    Variational Foundations and Generalized Unified Theory of RVE-Based Multiscale Models

    Get PDF
    A unified variational theory is proposed for a general class of multiscale models based on the concept of Representative Volume Element. The entire theory lies on three fundamental principles: (1) kinematical admissibility, whereby the macro- and micro-scale kinematics are defined and linked in a physically meaningful way; (2) duality, through which the natures of the force- and stress-like quantities are uniquely identified as the duals (power-conjugates) of the adopted kinematical variables; and (3) the Principle of Multiscale Virtual Power, a generalization of the well-known Hill-Mandel Principle of Macrohomogeneity, from which equilibrium equations and homogenization relations for the force- and stress-like quantities are unequivocally obtained by straightforward variational arguments. The proposed theory provides a clear, logically-structured framework within which existing formulations can be rationally justified and new, more general multiscale models can be rigorously derived in well-defined steps. Its generality allows the treatment of problems involving phenomena as diverse as dynamics, higher order strain effects, material failure with kinematical discontinuities, fluid mechanics and coupled multi-physics. This is illustrated in a number of examples where a range of models is systematically derived by following the same steps. Due to the variational basis of the theory, the format in which derived models are presented is naturally well suited for discretization by finite element-based or related methods of numerical approximation. Numerical examples illustrate the use of resulting models, including a non-conventional failure-oriented model with discontinuous kinematics, in practical computations

    Extended amygdala-parabrachial circuits alter threat assessment and regulate feeding

    Get PDF
    An animal\u27s evolutionary success depends on the ability to seek and consume foods while avoiding environmental threats. However, how evolutionarily conserved threat detection circuits modulate feeding is unknown. In mammals, feeding and threat assessment are strongly influenced by the parabrachial nucleus (PBN), a structure that responds to threats and inhibits feeding. Here, we report that the PBN receives dense inputs from two discrete neuronal populations in the bed nucleus of the stria terminalis (BNST), an extended amygdala structure that encodes affective information. Using a series of complementary approaches, we identify opposing BNST-PBN circuits that modulate neuropeptide-expressing PBN neurons to control feeding and affective states. These previously unrecognized neural circuits thus serve as potential nodes of neural circuitry critical for the integration of threat information with the intrinsic drive to feed

    Analyzing experimental data using the Rasch model

    Full text link
    We present a method for studying experimental data based on a psychometric model, the "Rasch model" (Rasch, 1966; Thissen & Steinberg, 1986). We illustrate the method with the use of a data set in the field of concept research. More specifically, we investigate whether a conjunctive concept can be seen as an additive combination of its constituents. High correlations between model and data are obtained, but a formal goodness-of-fit test indicates that the model does not completely account for the data. We then alter the Rasch model in such a way as to capture our idea of why the model deviates from the data. This results in higher correlations and a strong increase in goodness-of-fit. It is concluded that our ideas, as incorporated in the model, adequately summarize the data. More generally, this research illustrates that applying the Rasch model and altering it according to one's hypotheses is an excellent way to analyze experimental data

    Stimulant Reduction Intervention using Dosed Exercise (STRIDE) - CTN 0037: Study protocol for a randomized controlled trial

    Get PDF
    Background: There is a need for novel approaches to the treatment of stimulant abuse and dependence. Clinical data examining the use of exercise as a treatment for the abuse of nicotine, alcohol, and other substances suggest that exercise may be a beneficial treatment for stimulant abuse, with direct effects on decreased use and craving. In addition, exercise has the potential to improve other health domains that may be adversely affected by stimulant use or its treatment, such as sleep disturbance, cognitive function, mood, weight gain, quality of life, and anhedonia, since it has been shown to improve many of these domains in a number of other clinical disorders. Furthermore, neurobiological evidence provides plausible mechanisms by which exercise could positively affect treatment outcomes. The current manuscript presents the rationale, design considerations, and study design of the National Institute on Drug Abuse (NIDA) Clinical Trials Network (CTN) CTN-0037 Stimulant Reduction Intervention using Dosed Exercise (STRIDE) study. Methods/Design: STRIDE is a multisite randomized clinical trial that compares exercise to health education as potential treatments for stimulant abuse or dependence. This study will evaluate individuals diagnosed with stimulant abuse or dependence who are receiving treatment in a residential setting. Three hundred and thirty eligible and interested participants who provide informed consent will be randomized to one of two treatment arms: Vigorous Intensity High Dose Exercise Augmentation (DEI) or Health Education Intervention Augmentation (HEI). Both groups will receive TAU (i.e., usual care). The treatment arms are structured such that the quantity of visits is similar to allow for equivalent contact between groups. In both arms, participants will begin with supervised sessions 3 times per week during the 12-week acute phase of the study. Supervised sessions will be conducted as one-on-one (i.e., individual) sessions, although other participants may be exercising at the same time. Following the 12-week acute phase, participants will begin a 6-month continuation phase during which time they will attend one weekly supervised DEI or HEI session
    corecore