18,857 research outputs found

    Physical Bias of Galaxies From Large-Scale Hydrodynamic Simulations

    Get PDF
    We analyze a new large-scale (100h1100h^{-1}Mpc) numerical hydrodynamic simulation of the popular Λ\LambdaCDM cosmological model, including in our treatment dark matter, gas and star-formation, on the basis of standard physical processes. The method, applied with a numerical resolution of <200h1<200h^{-1}kpc (which is still quite coarse for following individual galaxies, especially in dense regions), attempts to estimate where and when galaxies form. We then compare the smoothed galaxy distribution with the smoothed mass distribution to determine the "bias" defined as b(δM/M)gal/(δM/M)totalb\equiv (\delta M/M)_{gal}/(\delta M/M)_{total} on scales large compared with the code numerical resolution (on the basis of resolution tests given in the appendix of this paper). We find that (holding all variables constant except the quoted one) bias increases with decreasing scale, with increasing galactic age or metallicity and with increasing redshift of observations. At the 8h18h^{-1}Mpc fiducial comoving scale bias (for bright regions) is 1.35 at z=0z=0 reaching to 3.6 at z=3z=3, both numbers being consistent with extant observations. We also find that (1020)h1(10-20)h^{-1}Mpc voids in the distribution of luminous objects are as observed (i.e., observed voids are not an argument against CDM-like models) and finally that the younger systems should show a colder Hubble flow than do the early type galaxies (a testable proposition). Surprisingly, little evolution is found in the amplitude of the smoothed galaxy-galaxy correlation function (as a function of {\it comoving} separation). Testing this prediction vs observations will allow a comparison between this work and that of Kauffmann et al which is based on a different physical modelingmethod.Comment: in press, ApJ, 26 latex pages plus 7 fig

    The Luminosity Function of Galaxies in the Las Campanas Redshift Survey

    Get PDF
    We present the RR-band luminosity function for a sample of 18678 galaxies, with average redshift z=0.1z = 0.1, from the Las Campanas Redshift Survey. The luminosity function may be fit by a Schechter function with M=20.29±0.02+5loghM^* = -20.29 \pm 0.02 + 5 \log h, α=0.70±0.05\alpha = -0.70 \pm 0.05, and $\phi^* = 0.019 \pm 0.001 \ h^3 Mpc~Mpc^{-3},forabsolutemagnitudes, for absolute magnitudes -23.0 \leq M - 5 \log h \leq -17.5.Wecompareourluminosityfunctiontothatfromotherredshiftsurveys;inparticularournormalizationisconsistentwiththatoftheStromloAPMsurvey,andisthereforeafactoroftwobelowthatimpliedbythe. We compare our luminosity function to that from other redshift surveys; in particular our normalization is consistent with that of the Stromlo-APM survey, and is therefore a factor of two below that implied by the b_J \approx 20brightgalaxycounts.Ournormalizationthusindicatesthatmuchmoreevolutionisneededtomatchthefaintgalaxycountdata,comparedtominimalevolutionmodelswhichnormalizeat bright galaxy counts. Our normalization thus indicates that much more evolution is needed to match the faint galaxy count data, compared to minimal evolution models which normalize at b_J \approx 20.Also,weshowthatourfaintendslope. Also, we show that our faint-end slope \alpha = -0.7,thoughshallowerthantypicalpreviousvalues, though ``shallower'' than typical previous values \alpha = -1,resultsprimarilyfromfittingthedetailedshapeoftheLCRSluminosityfunction,ratherthanfromanyabsenceofintrinsicallyfaintgalaxiesfromoursurvey.Finally,using[OII]3727equivalentwidth, results primarily from fitting the detailed shape of the LCRS luminosity function, rather than from any absence of intrinsically faint galaxies from our survey. Finally, using [OII] 3727 equivalent width W_{\lambda} = 5 A˚ asthedividingline,wefindsignificantdifferencesintheluminosityfunctionsofemissionandnonemissiongalaxies,particularlyintheir~\AA \ as the dividing line, we find significant differences in the luminosity functions of emission and non-emission galaxies, particularly in their \alphavalues.EmissiongalaxieshaveSchechterparameters values. Emission galaxies have Schechter parameters M^* = -20.03 \pm 0.03 + 5 \log hand and \alpha = -0.9 \pm 0.1,whilenonemissiongalaxiesaredescribedby, while non-emission galaxies are described by M^* = -20.22 \pm 0.02 + 5 \log hand and \alpha = -0.3 \pm 0.1$. (abridged abstract)Comment: 41 pages, including 13 postscript figures, uses AASTEX v4.0 style files. Important clarification of R-band definition, plus correction of luminosity densities and updated references. Main conclusions unchanged. Final version to appear in Ap

    The Electrodynamics of Inhomogeneous Rotating Media and the Abraham and Minkowski Tensors II: Applications

    Full text link
    Applications of the covariant theory of drive-forms are considered for a class of perfectly insulating media. The distinction between the notions of "classical photons" in homogeneous bounded and unbounded stationary media and in stationary unbounded magneto-electric media is pointed out in the context of the Abraham, Minkowski and symmetrized Minkowski electromagnetic stress-energy-momentum tensors. Such notions have led to intense debate about the role of these (and other) tensors in describing electromagnetic interactions in moving media. In order to address some of these issues for material subject to the Minkowski constitutive relations, the propagation of harmonic waves through homogeneous and inhomogeneous, isotropic plane-faced slabs at rest is first considered. To motivate the subsequent analysis on accelerating media two classes of electromagnetic modes that solve Maxwell's equations for uniformly rotating homogeneous polarizable media are enumerated. Finally it is shown that, under the influence of an incident monochromatic, circularly polarized, plane electromagnetic wave, the Abraham and symmetrized Minkowski tensors induce different time-averaged torques on a uniformly rotating materially inhomogeneous dielectric cylinder. We suggest that this observation may offer new avenues to explore experimentally the covariant electrodynamics of more general accelerating media.Comment: 29 pages, 4 figures. Accepted for publication in Proc. Roy. Soc.

    Dynamics from diffraction

    Get PDF
    A model-independent approach for the extraction of detailed lattice dynamical information from neutron powder diffraction data is described. The technique is based on a statistical analysis of atomistic configurations generated using reverse Monte Carlo structural refinement. Phonon dispersion curves extracted in this way are shown to reproduce many of the important features found in those determined independently using neutron triple-axis spectroscopy. The extent to which diffraction data are sensitive to lattice dynamics is explored in a range of materials. The prospect that such detailed dynamical information might be accessible using comparatively facile experiments such as neutron powder diffraction is incredibly valuable when studying systems for which established spectroscopic methods are prohibitive or inappropriate

    Using the filaments in the LCRS to test the LambdaCDM model

    Full text link
    It has recently been established that the filaments seen in the Las Campanas Redshift Survey (LCRS) are statistically significant at scales as large as 70 to 80 Mpc/h in the 3-3^{\circ} slice, and 50 to 70 Mpc/h in the five other LCRS slices. The ability to produce such filamentary features is an important test of any model for structure formation. We have tested the LCDM model with a featureless, scale invariant primordial power spectrum by quantitatively comparing the filamentarity in simulated LCRS slices with the actual data. The filamentarity in an unbiased LCDM model, we find, is less than the LCRS. Introducing a bias b=1.15, the model is in rough consistency with the data, though in two of the slices the filamentarity falls below the data at a low level of statistical significance. The filamentarity is very sensitive to the bias parameter and a high value b=1.5, which enhances filamentarity at small scales and suppresses it at large scales, is ruled out. A bump in the power spectrum at k~0.05 Mpc/h is found to have no noticeable effect on the filamentarity.Comment: 16 pages, 3 figures; Minor Changes, Accepted to Ap
    corecore