18,857 research outputs found
Physical Bias of Galaxies From Large-Scale Hydrodynamic Simulations
We analyze a new large-scale (Mpc) numerical hydrodynamic
simulation of the popular CDM cosmological model, including in our
treatment dark matter, gas and star-formation, on the basis of standard
physical processes. The method, applied with a numerical resolution of
kpc (which is still quite coarse for following individual galaxies,
especially in dense regions), attempts to estimate where and when galaxies
form. We then compare the smoothed galaxy distribution with the smoothed mass
distribution to determine the "bias" defined as on scales large compared with the code
numerical resolution (on the basis of resolution tests given in the appendix of
this paper). We find that (holding all variables constant except the quoted
one) bias increases with decreasing scale, with increasing galactic age or
metallicity and with increasing redshift of observations. At the Mpc
fiducial comoving scale bias (for bright regions) is 1.35 at reaching to
3.6 at , both numbers being consistent with extant observations. We also
find that Mpc voids in the distribution of luminous objects are
as observed (i.e., observed voids are not an argument against CDM-like models)
and finally that the younger systems should show a colder Hubble flow than do
the early type galaxies (a testable proposition). Surprisingly, little
evolution is found in the amplitude of the smoothed galaxy-galaxy correlation
function (as a function of {\it comoving} separation). Testing this prediction
vs observations will allow a comparison between this work and that of Kauffmann
et al which is based on a different physical modelingmethod.Comment: in press, ApJ, 26 latex pages plus 7 fig
The Luminosity Function of Galaxies in the Las Campanas Redshift Survey
We present the -band luminosity function for a sample of 18678 galaxies,
with average redshift , from the Las Campanas Redshift Survey. The
luminosity function may be fit by a Schechter function with , , and $\phi^* = 0.019 \pm 0.001 \
h^3^{-3}-23.0 \leq M - 5 \log h \leq -17.5b_J \approx 20b_J \approx 20\alpha = -0.7\alpha = -1W_{\lambda} = 5\alphaM^* =
-20.03 \pm 0.03 + 5 \log h\alpha = -0.9 \pm 0.1M^* = -20.22 \pm 0.02 + 5 \log h\alpha = -0.3
\pm 0.1$.
(abridged abstract)Comment: 41 pages, including 13 postscript figures, uses AASTEX v4.0 style
files. Important clarification of R-band definition, plus correction of
luminosity densities and updated references. Main conclusions unchanged.
Final version to appear in Ap
The Electrodynamics of Inhomogeneous Rotating Media and the Abraham and Minkowski Tensors II: Applications
Applications of the covariant theory of drive-forms are considered for a
class of perfectly insulating media. The distinction between the notions of
"classical photons" in homogeneous bounded and unbounded stationary media and
in stationary unbounded magneto-electric media is pointed out in the context of
the Abraham, Minkowski and symmetrized Minkowski electromagnetic
stress-energy-momentum tensors. Such notions have led to intense debate about
the role of these (and other) tensors in describing electromagnetic
interactions in moving media. In order to address some of these issues for
material subject to the Minkowski constitutive relations, the propagation of
harmonic waves through homogeneous and inhomogeneous, isotropic plane-faced
slabs at rest is first considered. To motivate the subsequent analysis on
accelerating media two classes of electromagnetic modes that solve Maxwell's
equations for uniformly rotating homogeneous polarizable media are enumerated.
Finally it is shown that, under the influence of an incident monochromatic,
circularly polarized, plane electromagnetic wave, the Abraham and symmetrized
Minkowski tensors induce different time-averaged torques on a uniformly
rotating materially inhomogeneous dielectric cylinder. We suggest that this
observation may offer new avenues to explore experimentally the covariant
electrodynamics of more general accelerating media.Comment: 29 pages, 4 figures. Accepted for publication in Proc. Roy. Soc.
Dynamics from diffraction
A model-independent approach for the extraction of detailed
lattice dynamical information from neutron powder diffraction data is described. The technique is based on a statistical analysis of atomistic configurations generated using reverse Monte Carlo structural refinement.
Phonon dispersion curves extracted in this way are shown to
reproduce many of the important features found in those determined independently using neutron triple-axis spectroscopy. The extent to which diffraction data are sensitive to lattice dynamics is explored in a
range of materials. The prospect that such detailed dynamical information might be accessible using comparatively facile experiments such as neutron
powder diffraction is incredibly valuable when studying systems for which established spectroscopic methods are prohibitive or
inappropriate
Using the filaments in the LCRS to test the LambdaCDM model
It has recently been established that the filaments seen in the Las Campanas
Redshift Survey (LCRS) are statistically significant at scales as large as 70
to 80 Mpc/h in the slice, and 50 to 70 Mpc/h in the five other
LCRS slices. The ability to produce such filamentary features is an important
test of any model for structure formation. We have tested the LCDM model with a
featureless, scale invariant primordial power spectrum by quantitatively
comparing the filamentarity in simulated LCRS slices with the actual data. The
filamentarity in an unbiased LCDM model, we find, is less than the LCRS.
Introducing a bias b=1.15, the model is in rough consistency with the data,
though in two of the slices the filamentarity falls below the data at a low
level of statistical significance. The filamentarity is very sensitive to the
bias parameter and a high value b=1.5, which enhances filamentarity at small
scales and suppresses it at large scales, is ruled out. A bump in the power
spectrum at k~0.05 Mpc/h is found to have no noticeable effect on the
filamentarity.Comment: 16 pages, 3 figures; Minor Changes, Accepted to Ap
- …
