126,776 research outputs found

    Tracers of chromospheric structure. I. CaII H&\&K emission distribution of 13000 F, G and K stars in SDSS DR7 spectroscopic sample

    Get PDF
    We present chromospheric activity index SHKS\rm_{HK} measurements for over 13,000 F, G and K disk stars with high signal-to-noise ratio (>> 60) spectra in the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) spectroscopic sample. A parameter δ\deltaS is defined as the difference between SHKS\rm_{HK} and a `zero' emission line fitted by several of the most inactive stars. The SHKS\rm_{HK} indices of subgiant stars tend to be much lower than dwarfs, which provide a way to distinguish dwarfs and giants with relatively low resolution spectra. Cooler stars are generally more active and display a larger scatter than hotter stars. Stars associated with the thick disk are in general less active than those of the thin disk. The fraction of K dwarfs that are active drops with vertical distance from the Galactic plane. Metallicity affects SHKS\rm_{HK} measurements differently among F, G and K dwarfs in this sample. Using the open clusters NGC 2420, M67 and NGC6791 as calibrations, ages of most field stars in this SDSS sample range from 3-8 Gyr.Comment: 9 pages, 11 figures, AJ, 2013, 145, 14

    Quantitative calculations of the excitonic energy spectra of semiconducting single-walled carbon nanotubes within a π\pi-electron model

    Full text link
    Using Coulomb correlation parameters appropriate for π\pi-conjugated polymers (PCPs), and a nearest neighbor hopping integral that is arrived at by fitting the energy spectra of three zigzag semiconducting single-walled carbon nanotubes (S-SWCNTs), we are able to determine quantitatively the exciton energies and exciton binding energies of 29 S-SWCNTs within a semiempirical π\pi-electron Hamiltonian that has been widely used for PCPs. Our work establishes the existence of a deep and fundamental relationship between PCPs and S-SWCNTs.Comment: 6 pages, 2 figures, 2 table

    Identification of the transition rule in a modified cellular automata model: the case of dendritic NH4Br crystal growth

    Get PDF
    A method of identifying the transition rule, encapsulated in a modified cellular automata (CA) model, is demonstrated using experimentally observed evolution of dendritic crystal growth patterns in NH4Br crystals. The influence of the factors, such as experimental set-up and image pre-processing, colour and size calibrations, on the method of identification are discussed in detail. A noise reduction parameter and the diffusion velocity of the crystal boundary are also considered. The results show that the proposed method can in principle provide a good representation of the dendritic growth anisotropy of any system

    Modelling of Electroluminescence in Polymers Using a Bipolar Charge Transport Model

    No full text
    Electroluminescence (EL) in polymeric materials is thought to occur due to the energy dissipation process from the recombination of opposite polarity charge carriers. It is considered as an indication of storage and transport of charge carriers in cable insulation subject to electrical stresses and may indicate the change in charge movement due to aging or degradation processes. Under ac electric fields, the interaction of opposite polarity charge carriers at the interface of polymer/conductor is enhanced compared with dc conditions, and seems to contribute a lot to the electroluminescence rather than the charge behaviours in the bulk of polymers. The dynamics of charge carriers both at the interface of polymer/conductor and in the bulk of polymers is investigated through a simulation work using a bipolar charge transport model. Figure 1 compares experimental electroluminescence results with simulated data from the recombination of injected charge carriers. The paper will give more details on EL model and comparison under various waveforms and frequencies
    corecore