1,616 research outputs found

    High-Resolution, Wide-Field Imaging of the Galactic Center Region at 330 MHz

    Get PDF
    We present a wide field, sub-arcminute resolution VLA image of the Galactic Center region at 330 MHz. With a resolution of ~ 7" X 12" and an RMS noise of 1.6 mJy/beam, this image represents a significant increase in resolution and sensitivity over the previously published VLA image at this frequency. The improved sensitivity has more than tripled the census of small diameter sources in the region, has resulted in the detection of two new Non Thermal Filaments (NTFs), 18 NTF candidates, 30 pulsar candidates, reveals previously known extended sources in greater detail, and has resulted in the first detection of Sagittarius A* in this frequency range. A version of this paper containing full resolution images may be found at http://lwa.nrl.navy.mil/nord/AAAB.pdf.Comment: Astronomical Journal, Accepted 62 Pages, 21 Figure

    Frame-dragging effects on magnetic fields near a rotating black hole

    Full text link
    We discuss the role of general relativity frame dragging acting on magnetic field lines near a rotating (Kerr) black hole. Near ergosphere the magnetic structure becomes strongly influenced and magnetic null points can develop. We consider aligned magnetic fields as well as fields inclined with respect to the rotation axis, and the two cases are shown to behave in profoundly different ways. Further, we construct surfaces of equal values of local electric and magnetic intensities, which have not yet been discussed in the full generality of a boosted rotating black hole.Comment: to appear in the proceedings of "The Central Kiloparsec in Galactic Nuclei (AHAR 2011)", Journal of Physics: Conference Series (JPCS), IOP Publishin

    Gauge thresholds in the presence of oblique magnetic fluxes

    Full text link
    We compute the one-loop partition function and analyze the conditions for tadpole cancellation in type I theories compactified on tori in the presence of internal oblique magnetic fields. We check open - closed string channel duality and discuss the effect of T-duality. We address the issue of the quantum consistency of the toroidal model with stabilized moduli recently proposed by Antoniadis and Maillard (AM). We then pass to describe the computation of one-loop threshold corrections to the gauge couplings in models of this kind. Finally we briefly comment on coupling unification and dilaton stabilization in phenomenologically more viable modelsComment: 34 pages, 2 figures; references added, major changes to the discussion of the model proposed by Antoniadis and Maillar

    Understanding the Geometry of Astrophysical Magnetic Fields

    Full text link
    Faraday rotation measurements have provided an invaluable technique with which to measure the properties of astrophysical magnetized plasmas. Unfortunately, typical observations provide information only about the density-weighted average of the magnetic field component parallel to the line of sight. As a result, the magnetic field geometry along the line of sight, and in many cases even the location of the rotating material, is poorly constrained. Frequently, interpretations of Faraday rotation observations are dependent upon underlying models of the magnetic field being probed (e.g., uniform, turbulent, equipartition). However, we show that at sufficiently low frequencies, specifically below roughly 13 (RM/rad m^-2)^(1/4) (B/G)^(1/2) MHz, the character of Faraday rotation changes, entering what we term the ``super-adiabatic regime'' in which the rotation measure is proportional to the integrated absolute value of the line-of-sight component of the field. As a consequence, comparing rotation measures at high frequencies with those in this new regime provides direct information about the geometry of the magnetic field along the line of sight. Furthermore, the frequency defining the transition to this new regime, nu_SA, depends directly upon the local electron density and magnetic field strength where the magnetic field is perpendicular to the line of sight, allowing the unambiguous distinction between Faraday rotation within and in front of the emission region. Typical values of nu_SA range from 10 kHz to 10 GHz, depending upon the details of the Faraday rotating environment. In particular, for resolved AGN, including the black holes at the center of the Milky Way (Sgr A*) and M81, nu_SA ranges from roughly 10 MHz to 10 GHz, and thus can be probed via existing and up-coming ground-based radio observatories.Comment: 13 pages, 5 figures, submitted to Ap

    Efficient Synthesis of Aromatic Quinoxaline Derivatives

    Get PDF
    Quinoxaline and its derivatives have many antimicrobial properties that make them possible substitutes for current medication, with abilities including antibacterial, anticancer, antiviral, and antifungal among others [1]. It is important to be able to quickly and effectively develop new compounds. Current methods to synthesize quinoxaline derivatives are cumbersome, with long reaction times, low yields, and required solvents that add hazards and costs. Microwave-assisted synthesis is a novel methodology to synthesize quinoxaline derivatives in only 5 minutes with no solvent. This study analyzes microwave irradiation as a synthesis technique

    Getting just the Supersymmetric Standard Model at Intersecting Branes on the Z6-orientifold

    Full text link
    In this paper, globally N=1 supersymmetric configurations of intersecting D6-branes on the Z6-orientifold are discussed, involving also fractional branes. It turns out rather miraculously that one is led almost automatically to just ONE particular class of 5 stack models containing the SM gauge group, which all have the same chiral spectrum. The further discussion shows that these models can be understood as exactly the supersymmetric standard model without any exotic chiral symmetric/antisymmetric matter. The superpartner of the Higgs finds a natural explanation and the hypercharge remains massless. However, the non-chiral spectrum within the model class is very different and does not in all cases allow for a N=2 low energy field theoretical understanding of the necessary breaking U(1)xU(1)->U(1) along the Higgs branch, which is needed in order to get the standard Yukawa couplings. Also the left-right symmetric models belong to exactly one class of chiral spectra, where the two kinds of exotic chiral fields can have the interpretation of forming a composite Higgs. The aesthetical beauty of these models, involving only non-vanishing intersection numbers of an absolute value three, seems to be unescapable.Comment: 45 pages, 2 figures, v3:some signs corrected in erratum, conclusions unchange
    corecore