1,020 research outputs found
Avoidability index for binary patterns with reversal
For every pattern over the alphabet , we specify the
least such that is -avoidable.Comment: 15 pages, 1 figur
MONEY ILLUSION, GORMAN AND LAU
Any demand equation satisfying Lau’s (1982) Fundamental Theorem of Exact Aggregation and 0° homogeneity in prices and income will have a Gorman (1981) functional form for each income term. This property does not depend on symmetry or adding up. The implications of this result are illustrated by an extensive example.Demand, exact aggregation, functional form, homogeneity
Face the Music and Glance: How Nonverbal Behaviour Aids Human Robot Relationships Based in Music
It is our hypothesis that improvised musical interaction will be able to provide the extended engagement often failing others during long term Human Robot Interaction (HRI) trials. Our previous work found that simply framing sessions with their drumming robot Mortimer as social interactions increased both social presence and engagement, two factors we feel are crucial to developing and maintaining a positive and meaningful relationship between human and robot. For this study we investigate the inclusion of the additional social modalities, namely head pose and facial expression, as nonverbal behaviour has been shown to be an important conveyor of information in both social and musical contexts. Following a 6 week experimental study using automatic behavioural metrics, results demonstrate those subjected to nonverbal behaviours not only spent more time voluntarily with the robot, but actually increased the time they spent as the trial progressed. Further, that they interrupted the robot less during social interactions and played for longer uninterrupted. Conversely, they also looked at the robot less in both musical and social contexts. We take these results as support for open ended musical activity providing a solid grounding for human robot relationships and the improvement of this by the inclusion of appropriate nonverbal behaviours
The Generalized Second Law implies a Quantum Singularity Theorem
The generalized second law can be used to prove a singularity theorem, by
generalizing the notion of a trapped surface to quantum situations. Like
Penrose's original singularity theorem, it implies that spacetime is null
geodesically incomplete inside black holes, and to the past of spatially
infinite Friedmann--Robertson--Walker cosmologies. If space is finite instead,
the generalized second law requires that there only be a finite amount of
entropy producing processes in the past, unless there is a reversal of the
arrow of time. In asymptotically flat spacetime, the generalized second law
also rules out traversable wormholes, negative masses, and other forms of
faster-than-light travel between asymptotic regions, as well as closed timelike
curves. Furthermore it is impossible to form baby universes which eventually
become independent of the mother universe, or to restart inflation. Since the
semiclassical approximation is used only in regions with low curvature, it is
argued that the results may hold in full quantum gravity. An introductory
section describes the second law and its time-reverse, in ordinary and
generalized thermodynamics, using either the fine-grained or the coarse-grained
entropy. (The fine-grained version is used in all results except those relating
to the arrow of time.) A proof of the coarse-grained ordinary second law is
given.Comment: 46 pages, 8 figures. v2: discussion of global hyperbolicity revised
(4.1, 5.2), more comments on AdS. v3: major revisions including change of
title. v4: similar to published version, but with corrections to plan of
paper (1) and definition of global hyperbolicity (3.2). v5: fixed proof of
Thm. 1, changed wording of Thm. 3 & proof of Thm. 4, revised Sec. 5.2, new
footnote
Born-Infeld Theory and Stringy Causality
Fluctuations around a non-trivial solution of Born-Infeld theory have a
limiting speed given not by the Einstein metric but the Boillat metric. The
Boillat metric is S-duality invariant and conformal to the open string metric.
It also governs the propagation of scalars and spinors in Born-Infeld theory.
We discuss the potential clash between causality determined by the closed
string and open string light cones and find that the latter never lie outside
the former. Both cones touch along the principal null directions of the
background Born-Infeld field. We consider black hole solutions in situations in
which the distinction between bulk and brane is not sharp such as space filling
branes and find that the location of the event horizon and the thermodynamic
properties do not depend on whether one uses the closed or open string metric.
Analogous statements hold in the more general context of non-linear
electrodynamics or effective quantum-corrected metrics. We show how Born-Infeld
action to second order might be obtained from higher-curvature gravity in
Kaluza-Klein theory. Finally we point out some intriguing analogies with
Einstein-Schr\"odinger theory.Comment: 31 pages, 4 figures, LaTex; Some comments and references adde
Black Hole Entropy without Brick Walls
We present evidence which confirms a suggestion by Susskind and Uglum
regarding black hole entropy. Using a Pauli-Villars regulator, we find that 't
Hooft's approach to evaluating black hole entropy through a
statistical-mechanical counting of states for a scalar field propagating
outside the event horizon yields precisely the one-loop renormalization of the
standard Bekenstein-Hawking formula, S=\A/(4G). Our calculation also yields a
constant contribution to the black hole entropy, a contribution associated with
the one-loop renormalization of higher curvature terms in the gravitational
action.Comment: 15 pages, plain LaTex minor additions including some references;
version accepted for publicatio
Measurement of Spin Transfer Observables in Antiproton-Proton -> Antilambda-Lambda at 1.637 GeV/c
Spin transfer observables for the strangeness-production reaction
Antiproton-Proton -> Antilambda-Lambda have been measured by the PS185
collaboration using a transversely-polarized frozen-spin target with an
antiproton beam momentum of 1.637 GeV/c at the Low Energy Antiproton Ring at
CERN. This measurement investigates observables for which current models of the
reaction near threshold make significantly differing predictions. Those models
are in good agreement with existing measurements performed with unpolarized
particles in the initial state. Theoretical attention has focused on the fact
that these models produce conflicting predictions for the spin-transfer
observables D_{nn} and K_{nn}, which are measurable only with polarized target
or beam. Results presented here for D_{nn} and K_{nn} are found to be in
disagreement with predictions from existing models. These results also
underscore the importance of singlet-state production at backward angles, while
current models predict complete or near-complete triplet-state dominance.Comment: 5 pages, 3 figure
The MRN complex is transcriptionally regulated by MYCN during neural cell proliferation to control replication stress
The MRE11/RAD50/NBS1 (MRN) complex is a major sensor of DNA double strand breaks, whose role in controlling faithful DNA replication and preventing replication stress is also emerging. Inactivation of the MRN complex invariably leads to developmental and/or degenerative neuronal defects, the pathogenesis of which still remains poorly understood. In particular, NBS1 gene mutations are associated with microcephaly and strongly impaired cerebellar development, both in humans and in the mouse model. These phenotypes strikingly overlap those induced by inactivation of MYCN, an essential promoter of the expansion of neuronal stem and progenitor cells, suggesting that MYCN and the MRN complex might be connected on a unique pathway essential for the safe expansion of neuronal cells. Here, we show that MYCN transcriptionally controls the expression of each component of the MRN complex. By genetic and pharmacological inhibition of the MRN complex in a MYCN overexpression model and in the more physiological context of the Hedgehog-dependent expansion of primary cerebellar granule progenitor cells, we also show that the MRN complex is required for MYCN-dependent proliferation. Indeed, its inhibition resulted in DNA damage, activation of a DNA damage response, and cell death in a MYCN- and replication-dependent manner. Our data indicate the MRN complex is essential to restrain MYCN-induced replication stress during neural cell proliferation and support the hypothesis that replication-born DNA damage is responsible for the neuronal defects associated with MRN dysfunctions.Cell Death and Differentiation advance online publication, 12 June 2015; doi:10.1038/cdd.2015.81
The nucleon-nucleon interaction
We review the major progress of the past decade concerning our understanding
of the nucleon-nucleon interaction. The focus is on the low-energy region
(below pion production threshold), but a brief outlook towards higher energies
is also given. The items discussed include charge-dependence, the precise value
of the coupling constant, phase shift analysis and high-precision NN
data and potentials. We also address the issue of a proper theory of nuclear
forces. Finally, we summarize the essential open questions that future research
should be devoted to.Comment: 42 pages, 12 figures, iopart.cls style; Topical Review prepared for
J. Phys. G: Nucl. Part. Phy
Nucleon-Nucleon Interaction: A Typical/Concise Review
Nearly a recent century of work is divided to Nucleon-Nucleon (NN)
interaction issue. We review some overall perspectives of NN interaction with a
brief discussion about deuteron, general structure and symmetries of NN
Lagrangian as well as equations of motion and solutions. Meanwhile, the main NN
interaction models, as frameworks to build NN potentials, are reviewed
concisely. We try to include and study almost all well-known potentials in a
similar way, discuss more on various commonly used plain forms for two-nucleon
interaction with an emphasis on the phenomenological and meson-exchange
potentials as well as the constituent-quark potentials and new ones based on
chiral effective field theory and working in coordinate-space mostly. The
potentials are constructed in a way that fit NN scattering data, phase shifts,
and are also compared in this way usually. An extra goal of this study is to
start comparing various potentials forms in a unified manner. So, we also
comment on the advantages and disadvantages of the models and potentials partly
with reference to some relevant works and probable future studies.Comment: 85 pages, 5 figures, than the previous v3 edition, minor changes, and
typos fixe
- …
