679 research outputs found

    Flow rule, self-channelization and levees in unconfined granular flows

    Full text link
    Unconfined granular flows along an inclined plane are investigated experimentally. During a long transient, the flow gets confined by quasistatic banks but still spreads laterally towards a well-defined asymptotic state following a nontrivial process. Far enough from the banks a scaling for the depth averaged velocity is obtained, which extends the one obtained for homogeneous steady flows. Close to jamming it exhibits a crossover towards a nonlocal rheology. We show that the levees, commonly observed along the sides of the deposit upon interruption of the flow, disappear for long flow durations. We demonstrate that the morphology of the deposit builds up during the flow, in the form of an underlying static layer, which can be deduced from surface velocity profiles, by imposing the same flow rule everywhere in the flow.Comment: 4 pages, 5 figure

    DNA barcoding reveals the coral “laboratory-rat”, Stylophora pistillata encompasses multiple identities

    Get PDF
    Stylophora pistillata is a widely used coral “lab-rat” species with highly variable morphology and a broad biogeographic range (Red Sea to western central Pacific). Here we show, by analysing Cytochorme Oxidase I sequences, from 241 samples across this range, that this taxon in fact comprises four deeply divergent clades corresponding to the Pacific-Western Australia, Chagos-Madagascar-South Africa, Gulf of Aden-Zanzibar-Madagascar, and Red Sea-Persian/Arabian Gulf-Kenya. On the basis of the fossil record of Stylophora, these four clades diverged from one another 51.5-29.6 Mya, i.e., long before the closure of the Tethyan connection between the tropical Indo-West Pacific and Atlantic in the early Miocene (16–24 Mya) and should be recognised as four distinct species. These findings have implications for comparative ecological and/or physiological studies carried out using Stylophora pistillata as a model species, and highlight the fact that phenotypic plasticity, thought to be common in scleractinian corals, can mask significant genetic variation

    Transcriptional Response of Two Core Photosystem Genes in Symbiodinium spp. Exposed to Thermal Stress

    Get PDF
    Mutualistic symbioses between scleractinian corals and endosymbiotic dinoflagellates (Symbiodinium spp.) are the foundation of coral reef ecosystems. For many coral-algal symbioses, prolonged episodes of thermal stress damage the symbiont\u27s photosynthetic capability, resulting in its expulsion from the host. Despite the link between photosynthetic competency and symbiont expulsion, little is known about the effect of thermal stress on the expression of photosystem genes in Symbiodinium. This study used real-time PCR to monitor the transcript abundance of two important photosynthetic reaction center genes, psbA(encoding the D1 protein of photosystem II) and psaA (encoding the P700 protein of photosystem I), in four cultured isolates (representing ITS2-types A13, A20, B1, and F2) and two in hospite Symbiodinium spp. within the coral Pocillopora spp. (ITS2-types C1b-c and D1). Both cultured and in hospite Symbiodinium samples were exposed to elevated temperatures (32°C) over a 7-day period and examined for changes in photochemistry and transcript abundance. Symbiodinium A13 and C1b-c (both thermally sensitive) demonstrated significant declines in both psbA and psaA during the thermal stress treatment, whereas the transcript levels of the other Symbiodinium types remained stable. The downregulation of both core photosystem genes could be the result of several different physiological mechanisms, but may ultimately limit repair rates of photosynthetic proteins, rendering some Symbiodinium spp. especially susceptible to thermal stress

    Elevated hepatocyte growth factor levels in osteoarthritis osteoblasts contribute to their altered response to bone morphogenetic protein-2 and reduced mineralization capacity

    Get PDF
    PURPOSE: Clinical and in vitro studies suggest that subchondral bone sclerosis due to abnormal osteoblasts is involved in the progression of osteoarthritis (OA). Human osteoblasts isolated from sclerotic subchondral OA bone tissue show an altered phenotype, a decreased canonical Wnt/ß-catenin pathway, and a reduced mineralization in vitro as well as in vivo. These alterations were linked with an abnormal response to BMP-2. OA osteoblasts release factors such as the hepatocyte growth factor (HGF) that contribute to cartilage loss whereas chondrocytes do not express HGF. HGF can stimulate BMP-2 expression in human osteoblasts, however, the role of HGF and its effect in OA osteoblasts remains unknown. Here we investigated whether elevated endogenous HGF levels in OA osteoblasts are responsible for their altered response to BMP-2. METHODS: We prepared primary human subchondral osteoblasts using the sclerotic medial portion of the tibial plateaus of OA patients undergoing total knee arthroplasty, or from tibial plateaus of normal individuals obtained at autopsy. The expression of HGF was evaluated by qRT-PCR and the protein production by western blot analysis. HGF expression was reduced with siRNA technique whereas its activity was inhibited using the selective inhibitor PHA665752. Alkaline phosphatase activity (ALPase) and osteocalcin release were measured by substrate hydrolysis and EIA respectively. Canonical Wnt/β-catenin signaling (cWnt) was evaluated both by target gene expression using the TOPflash TCF/lef luciferase reporter assay and western blot analysis of β-catenin levels in response to Wnt3a stimulation. Mineralization in response to BMP-2 was evaluated by alizarin red staining. RESULTS: The expression of HGF was increased in OA osteoblasts compared to normal osteoblasts and was maintained during their in vitro differentiation. OA osteoblasts released more HGF than normal osteoblasts as assessed by western blot analysis. HGF stimulated the expression of TGF-β1. BMP-2 dose-dependently (1 to 100ng/ml) stimulated both ALPase and osteocalcin in normal osteoblasts whereas, it inhibited them in OA osteoblasts. HGF-siRNA treatments reversed this response in OA osteoblasts and restored the BMP-2 response. cWnt is reduced in OA osteoblasts compared to normal, and HGF-siRNA treatments increased cWnt in OA osteoblasts almost to normal. Smad1/5/8 phosphorylation in response to BMP-2, which is reduced in OA osteoblasts, was corrected when these cells were treated with PHA665752. The BMP-2-dependent mineralization of OA osteoblasts, which is also reduced compared to normal, was only partially restored by PHA665752 treatment whereas 28days treatment with HGF reduced the mineralization of normal osteoblasts. CONCLUSION: OA osteoblasts expressed more HGF than normal osteoblasts. Increased endogenous HGF production in OA osteoblasts stimulated the expression of TGF-β1 and reduced their response to BMP-2. Inhibiting HGF expression or HGF signaling restored the response to BMP-2 and Smad1/5/8 signaling. In addition, decreased HGF signaling partly corrects the abnormal mineralization of OA osteoblasts while increased HGF prevents the normal mineralization of normal osteoblasts. In summary, we hypothesize that sustained elevated HGF levels in OA osteoblasts drive their abnormal phenotype and is implicated in OA pathophysiology

    Climate change promotes parasitism in a coral symbiosis.

    Get PDF
    Coastal oceans are increasingly eutrophic, warm and acidic through the addition of anthropogenic nitrogen and carbon, respectively. Among the most sensitive taxa to these changes are scleractinian corals, which engineer the most biodiverse ecosystems on Earth. Corals' sensitivity is a consequence of their evolutionary investment in symbiosis with the dinoflagellate alga, Symbiodinium. Together, the coral holobiont has dominated oligotrophic tropical marine habitats. However, warming destabilizes this association and reduces coral fitness. It has been theorized that, when reefs become warm and eutrophic, mutualistic Symbiodinium sequester more resources for their own growth, thus parasitizing their hosts of nutrition. Here, we tested the hypothesis that sub-bleaching temperature and excess nitrogen promotes symbiont parasitism by measuring respiration (costs) and the assimilation and translocation of both carbon (energy) and nitrogen (growth; both benefits) within Orbicella faveolata hosting one of two Symbiodinium phylotypes using a dual stable isotope tracer incubation at ambient (26 °C) and sub-bleaching (31 °C) temperatures under elevated nitrate. Warming to 31 °C reduced holobiont net primary productivity (NPP) by 60% due to increased respiration which decreased host %carbon by 15% with no apparent cost to the symbiont. Concurrently, Symbiodinium carbon and nitrogen assimilation increased by 14 and 32%, respectively while increasing their mitotic index by 15%, whereas hosts did not gain a proportional increase in translocated photosynthates. We conclude that the disparity in benefits and costs to both partners is evidence of symbiont parasitism in the coral symbiosis and has major implications for the resilience of coral reefs under threat of global change

    Patterns and Collective Behavior in Granular Media: Theoretical Concepts

    Full text link
    Granular materials are ubiquitous in our daily lives. While they have been a subject of intensive engineering research for centuries, in the last decade granular matter attracted significant attention of physicists. Yet despite a major efforts by many groups, the theoretical description of granular systems remains largely a plethora of different, often contradicting concepts and approaches. Authors give an overview of various theoretical models emerged in the physics of granular matter, with the focus on the onset of collective behavior and pattern formation. Their aim is two-fold: to identify general principles common for granular systems and other complex non-equilibrium systems, and to elucidate important distinctions between collective behavior in granular and continuum pattern-forming systems.Comment: Submitted to Reviews of Modern Physics. Full text with figures (2Mb pdf) avaliable at http://mti.msd.anl.gov/AransonTsimringReview/aranson_tsimring.pdf Community responce is appreciated. Comments/suggestions send to [email protected]

    Peatland Initiation, Carbon Accumulation, and 2 ka Depth in the James Bay Lowland and Adjacent Regions

    Get PDF
    Copyright © 2014 University of Colorado at Boulder, Institute of Arctic and Alpine ResearchPeatlands surrounding Hudson and James Bays form the second largest peatland complex in the world and contain major stores of soil carbon (C). This study utilized a transect of eight ombrotrophic peat cores from remote regions of central and northern Ontario to quantify the magnitude and rate of C accumulation since peatland initiation and for the past 2000 calendar years before present (2 ka). These new data were supplemented by 17 millennially resolved chronologies from a literature review covering the Boreal Shield, Hudson Plains, and Taiga Shield bordering Hudson and James Bays. Peatlands initiated in central and northern Ontario by 7.8 ka following deglaciation and isostatic emergence of northern areas to above sea level. Total C accumulated since inception averaged 109.7 ± (std. dev.) 36.2 kg C m–2. Approximately 40% of total soil C has accumulated since 2 ka at an average apparent rate of 20.2 ± 6.9 g C m–2 yr–1. The 2 ka depths correlate significantly and positively with modern gridded climate estimates for mean annual precipitation, mean annual air temperature, growing degree-days > 0 °C, and photosynthetically active radiation integrated over days > 0 °C. There are significantly shallower depths in permafrost peatlands. Vertical peat accumulation was likely constrained by temperature, growing season length, and photosynthetically active radiation over the last 2 ka in the Hudson Bay Lowlands and surrounding regions.US National Science Foundatio

    Diffusive Evolution of Experimental Braided Rivers

    Get PDF
    Water flowing over a loose granular bed organizes into a braided river, a network of ephemeral and interacting channels. The temporal and spatial evolution of this network of braided channels is not yet quantitatively understood. In ∼1 m-scale experiments, we found that individual channels exhibit a self-similar geometry and near-threshold transport conditions. Measurements of the rate of growth of topographic correlation length scales, the time scale of system-slope establishment, and the random spatial decorrelation of channel locations indicate together that the evolution of the braided river system may be diffusive in nature. This diffusion is due to the separation of scales between channel formation and network evolution, and the random motion of interacting channels when viewed at a coarse-grained scale
    corecore