985 research outputs found

    Maintenance of polar stratospheric clouds in a moist stratosphere

    Get PDF
    Previous work has shown that polar stratospheric clouds (PSCs) could have acted to substantially warm high latitude regions during past warm climates such as the Eocene (55 Ma). Using a simple model of stratospheric water vapor transport and polar stratospheric cloud (PSC) formation, we investigate the dependence of PSC optical depth on tropopause temperature, cloud microphysical parameters, stratospheric overturning, and tropospheric methane. We show that PSC radiative effects can help slow removal of water from the stratosphere via self-heating. However, we also show that the ability of PSCs to have a substantial impact on climate depends strongly on the PSC particle number density and the strength of the overturning circulation. Thus even a large source of stratospheric water vapor (e.g. from methane oxidation) will not result in substantial PSC radiative effects unless PSC ice crystal number density is high compared to most current observations, and stratospheric overturning (which modulates polar stratospheric temperatures) is low. These results are supported by analysis of a series of runs of the NCAR WACCM model with methane concentrations varying up to one thousand times present levels

    The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Overview and description of models, simulations and climate diagnostics

    Get PDF
    The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) consists of a series of time slice experiments targeting the long-term changes in atmospheric composition between 1850 and 2100, with the goal of documenting composition changes and the associated radiative forcing. In this overview paper, we introduce the ACCMIP activity, the various simulations performed (with a requested set of 14) and the associated model output. The 16 ACCMIP models have a wide range of horizontal and vertical resolutions, vertical extent, chemistry schemes and interaction with radiation and clouds. While anthropogenic and biomass burning emissions were specified for all time slices in the ACCMIP protocol, it is found that the natural emissions are responsible for a significant range across models, mostly in the case of ozone precursors. The analysis of selected present-day climate diagnostics (precipitation, temperature, specific humidity and zonal wind) reveals biases consistent with state-of-the-art climate models. The model-to-model comparison of changes in temperature, specific humidity and zonal wind between 1850 and 2000 and between 2000 and 2100 indicates mostly consistent results. However, models that are clear outliers are different enough from the other models to significantly affect their simulation of atmospheric chemistry

    The vertical distribution of ozone instantaneous radiative forcing from satellite and chemistry climate models

    Get PDF
    We evaluate the instantaneous radiative forcing (IRF) of tropospheric ozone predicted by four state-of-the-art global chemistry climate models (AM2-Chem, CAM-Chem, ECHAM5-MOZ, and GISS-PUCCINI) against ozone distribution observed from the NASA Tropospheric Emission Spectrometer (TES) during August 2006. The IRF is computed through the application of an observationally constrained instantaneous radiative forcing kernels (IRFK) to the difference between TES and model-predicted ozone. The IRFK represent the sensitivity of outgoing longwave radiation to the vertical and spatial distribution of ozone under all-sky condition. Through this technique, we find total tropospheric IRF biases from -0.4 to + 0.7 W/m(2) over large regions within the tropics and midlatitudes, due to ozone differences over the region in the lower and middle troposphere, enhanced by persistent bias in the upper troposphere-lower stratospheric region. The zonal mean biases also range from -30 to + 50 mW/m(2) for the models. However, the ensemble mean total tropospheric IRF bias is less than 0.2 W/m(2) within the entire troposphere

    Technical Note: Ozonesonde climatology between 1995 and 2011: description, evaluation and applications

    Get PDF
    An ozone climatology based on ozonesonde measurements taken over the last 17 yr has been constructed for model evaluation and comparisons to other observations. Vertical ozone profiles for 42 stations around the globe have been compiled for the period 1995–2011, in pressure and tropopause-referenced altitudes. For each profile, the mean, standard deviation, median, the half-width are provided, as well as information about interannual variability. Regional aggregates are formed in combining stations with similar ozone characteristics. The Hellinger distance is introduced as a new diagnostic to identify stations that describe similar shapes of ozone probability distribution functions (PDFs). In this way, 12 regions were selected covering at least 2 stations and the variability among those stations is discussed. Significant variability with longitude of ozone distributions in the troposphere and lower stratosphere in the northern mid- and high latitudes is found. The representativeness of regional aggregates is discussed for high northern latitudes, Western Europe, Eastern US, and Japan, using independent observations from surface stations and MOZAIC aircraft data. Good agreement exists between ozonesondes and aircraft observations in the mid-troposphere and between ozonesondes and surface observations for Western Europe. For Eastern US and high northern latitudes, surface ozone values from ozonesondes are biased 10 ppb high compared to independent measurements. An application of the climatology is presented using the NCAR CAM-Chem model. The climatology allows evaluation of the model performance regarding ozone averages, seasonality, interannual variability, and the shape of ozone distributions. The new assessment of the key features of ozone distributions gives deeper insights into the performance of models

    The effect of harmonized emissions on aerosol properties in global models – an AeroCom experiment

    Get PDF
    The effects of unified aerosol sources on global aerosol fields simulated by different models are examined in this paper. We compare results from two AeroCom experiments, one with different (ExpA) and one with unified emissions, injection heights, and particle sizes at the source (ExpB). Surprisingly, harmonization of aerosol sources has only a small impact on the simulated diversity for aerosol burden, and consequently optical properties, as the results are largely controlled by model-specific transport, removal, chemistry (leading to the formation of secondary aerosols) and parameterizations of aerosol microphysics (e.g. the split between deposition pathways) and to a lesser extent on the spatial and temporal distributions of the (precursor) emissions. The burdens of black carbon and especially sea salt become more coherent in ExpB only, because the large ExpA diversity for these two species was caused by few outliers. The experiment also indicated that despite prescribing emission fluxes and size distributions, ambiguities in the implementation in individual models can lead to substantial differences. These results indicate the need for a better understanding of aerosol life cycles at process level (including spatial dispersal and interaction with meteorological parameters) in order to obtain more reliable results from global aerosol simulations. This is particularly important as such model results are used to assess the consequences of specific air pollution abatement strategies
    corecore