3,230 research outputs found
Investigation of charge coupled device correlation techniques
Analog Charge Transfer Devices (CTD's) offer unique advantages to signal processing systems, which often have large development costs, making it desirable to define those devices which can be developed for general system's use. Such devices are best identified and developed early to give system's designers some interchangeable subsystem blocks, not requiring additional individual development for each new signal processing system. The objective of this work is to describe a discrete analog signal processing device with a reasonably broad system use and to implement its design, fabrication, and testing
Cosmological Implications of the Tetron Model of Elementary Particles
Based on a possible solution to the tetron spin problem, a modification of
the standard Big Bang scenario is suggested, where the advent of a spacetime
manifold is connected to the appearance of tetronic bound states. The metric
tensor is constructed from tetron constituents and the reason for cosmic
inflation is elucidated. Furthermore, there are natural dark matter candidates
in the tetron model. The ratio of ordinary to dark matter in the universe is
calculated to be 1:5.Comment: 23 page
The development of a ε-polycaprolactone (PCL) scaffold for CNS repair
Potential treatment strategies for the repair of spinal cord injury (SCI) currently favour a combinatorial approach incorporating several factors, including exogenous cell transplantation and biocompatible scaffolds. The use of scaffolds for bridging the gap at the injury site is very appealing although there has been little investigation into CNS neural cell interaction and survival on such scaffolds before implantation. Previously we demonstrated that aligned micro-grooves 12.5-25 µm wide on ε-polycaprolactone (PCL) promoted aligned neurite orientation and supported myelination. In this study we identify the appropriate substrate and its topographical features required for the design of a 3D scaffold intended for transplantation in SCI. Using an established myelinating culture system of dissociated spinal cord cells, recapitulating many of the features of the intact spinal cord, we demonstrate that astrocytes plated on the topography secrete soluble factors(s) that delay oligodendrocyte differentiation but do not prevent myelination. However, as myelination does occur after a further 10-12 days in culture this does not prevent the use of PCL as a scaffold material as part of a combined strategy for the repair of SCI
Precise targeted integration by a chimaeric transposase zinc-finger fusion protein
Transposons of the Tc1/mariner family have been used to integrate foreign DNA stably into the genome of a large variety of different cell types and organisms. Integration is at TA dinucleotides located essentially at random throughout the genome, potentially leading to insertional mutagenesis, inappropriate activation of nearby genes, or poor expression of the transgene. Here, we show that fusion of the zinc-finger DNA-binding domain of Zif268 to the C-terminus of ISY100 transposase leads to highly specific integration into TA dinucleotides positioned 6-17 bp to one side of a Zif268 binding site. We show that the specificity of targeting can be changed using Zif268 variants that bind to sequences from the HIV-1 promoter, and demonstrate a bacterial genetic screen that can be used to select for increased levels of targeted transposition. A TA dinucleotide flanked by two Zif268 binding sites was efficiently targeted by our transposase-Zif268 fusion, suggesting the possibility of designer ‘Z-transposases’ that could deliver transgenic cargoes to chosen genomic locations
Newly identified NO-sensor guanylyl cyclase/connexin 43 association is involved in cardiac electrical function
Background: Guanylyl cyclase, a heme-containing alpha 1 beta 1 heterodimer (GC1), produces cGMP in response to Nitric oxide (NO) stimulation. The NO-GC1-cGMP pathway negatively regulates cardiomyocyte contractility and protects against cardiac hypertrophy-related remodeling. We recently reported that the beta 1 subunit of GC1 is detected at the intercalated disc with connexin 43 (Cx43). Cx43 forms gap junctions (GJs) at the intercalated disc that are responsible for electrical propagation. We sought to determine whether there is a functional association between GC1 and Cx43 and its role in cardiac homeostasis.
Methods and Results: GC1 and Cx43 immunostaining at the intercalated disc and coimmunoprecipitation from membrane fraction indicate that GC1 and Cx43 are associated. Mice lacking the alpha subunit of GC1 (GC alpha 1 knockout mice) displayed a significant decrease in GJ function (dye-spread assay) and Cx43 membrane lateralization. In a cardiac-hypertrophic model, angiotensin II treatment disrupted the GC1-Cx43 association and induced significant Cx43 membrane lateralization, which was exacerbated in GC alpha 1 knockout mice. Cx43 lateralization correlated with decreased Cx43-containing GJs at the intercalated disc, predictors of electrical dysfunction. Accordingly, an ECG revealed that angiotensin II-treated GCa1 knockout mice had impaired ventricular electrical propagation. The phosphorylation level of Cx43 at serine 365, a protein-kinase A upregulated site involved in trafficking/assembly of GJs, was decreased in these models.
Conclusions: GC1 modulates ventricular Cx43 location, hence GJ function, and partially protects from electrical dysfunction in an angiotensin II hypertrophy model. Disruption of the NO-cGMP pathway is associated with cardiac electrical disturbance and abnormal Cx43 phosphorylation. This previously unknown NO/Cx43 signaling could be a protective mechanism against stress-induced arrhythmia
Effect of polarized gluon distribution on spin asymmetries for neutral and charged pion production
A longitudinal double spin asymmetry for \pi^0 production has been measured
by the PHENIX collaboration. The asymmetry is sensitive to the polarized gluon
distribution and is indicated to be positive by theoretical predictions. We
study a correlation between behavior of the asymmetry and polarized gluon
distribution in neutral and charged pion production at RHIC.Comment: 7 pages, 5 eps figures, section added, typos corrected. to be
published in PR
Polarized semi-inclusive electroweak structure functions at next-to-leading-order
We present a next-to-leading order (NLO) computation of the full set of
polarized and unpolarized electroweak semi-inclusive DIS (SIDIS) structure
functions, whose knowledge is crucial for a precise extraction of polarized
parton distributions. We focus on the phenomenology of the polarized structure
functions for the kinematical conditions that could be reached in an
Electron-Ion-Collider.
We show that the NLO corrections are sizeable, particularly in the small-
range. We test the sensitivity of these structure functions on certain quark
distributions and compare it to the situation of inclusive DIS and
electromagnetic SIDIS.Comment: 17 pages, 5 figure
On ‘Organized Crime’ in the illicit antiquities trade: moving beyond the definitional debate
The extent to which ‘organized crime’ is involved in illicit antiquities trafficking is unknown and frequently debated. This paper explores the significance and scale of the illicit antiquities trade as a unique transnational criminal phenomenon that is often said to be perpetrated by and exhibit traits of so-called ‘organized crime.’ The definitional debate behind the term ‘organized crime’ is considered as a potential problem impeding our understanding of its existence or extent in illicit antiquities trafficking, and a basic progression-based model is then suggested as a new tool to move beyond the definitional debate for future research that may help to elucidate the actors, processes and criminal dynamics taking place within the illicit antiquities trade from source to market. The paper concludes that researchers should focus not on the question of whether organized criminals- particularly in a traditionally conceived, mafia-type stereotypical sense- are involved in the illicit antiquities trade, but instead on the structure and progression of antiquities trafficking itself that embody both organized and criminal dynamics
Transverse Momentum in Semi-Inclusive Polarized Deep Inelastic Scattering and the Spin-Flavor Structure of the Proton
The non-valence spin-flavor structure of the nucleon extracted from
semi-inclusive measurements of polarized deep inelastic scattering depends
strongly on the transverse momentum of the detected hadrons which are used to
determine the individual polarized sea distributions. This physics may explain
the recent HERMES observation of a positively polarized strange sea through
semi-inclusive scattering, in contrast to the negative strange sea polarization
deduced from inclusive polarized deep inelastic scattering.Comment: 4 pages, revtex style, 2 figure
Precise determination of the Wtb couplings at LHC
Top pair production at LHC is the ideal place to search for nonstandard Wtb
couplings in t -> W b -> l nu b decays. The lb forward-backward asymmetry in
the W rest frame is very sensitive to sigma_{mu nu} couplings, and can spot
one-loop QCD corrections to the decay vertex with more than 5 sigma statistical
significance. We discuss the potential of this asymmetry to signal nonstandard
gamma_mu and sigma_{mu nu} couplings and compare with top-antitop spin
correlation asymmetries, which have a lower sensitivity. We also briefly
summarise the results for Tevatron.Comment: LaTeX, 12 pages, 2 PS figures. One reference added. To be published
in PR
- …
