645 research outputs found
Self-Pulsating Semiconductor Lasers: Theory and Experiment
We report detailed measurements of the pump-current dependency of the
self-pulsating frequency of semiconductor CD lasers. A distinct kink in this
dependence is found and explained using rate-equation model. The kink denotes a
transition between a region where the self-pulsations are weakly sustained
relaxation oscillations and a region where Q-switching takes place. Simulations
show that spontaneous emission noise plays a crucial role for the cross-over.Comment: Revtex, 16 pages, 7 figure
Photodarkening mitigation in Yb-doped fiber lasers by 405 nm irradiation
We investigate the impact of 405 nm radiation on photodarkening evolution in Yb-doped fiber. Simultaneous photodarkening and photobleaching effects induced by 976 nm and 405 nm radiations respectively were investigated in a 1070 nm laser
Wave: A New Family of Trapdoor One-Way Preimage Sampleable Functions Based on Codes
We present here a new family of trapdoor one-way Preimage Sampleable
Functions (PSF) based on codes, the Wave-PSF family. The trapdoor function is
one-way under two computational assumptions: the hardness of generic decoding
for high weights and the indistinguishability of generalized -codes.
Our proof follows the GPV strategy [GPV08]. By including rejection sampling, we
ensure the proper distribution for the trapdoor inverse output. The domain
sampling property of our family is ensured by using and proving a variant of
the left-over hash lemma. We instantiate the new Wave-PSF family with ternary
generalized -codes to design a "hash-and-sign" signature scheme which
achieves existential unforgeability under adaptive chosen message attacks
(EUF-CMA) in the random oracle model. For 128 bits of classical security,
signature sizes are in the order of 15 thousand bits, the public key size in
the order of 4 megabytes, and the rejection rate is limited to one rejection
every 10 to 12 signatures.Comment: arXiv admin note: text overlap with arXiv:1706.0806
What controls the isotopic composition of Greenland surface snow?
International audienceWater stable isotopes in Greenland ice core data provide key paleoclimatic information, and have been compared with precipitation isotopic composition simulated by isotopically enabled atmospheric models. However, post-depositional processes linked with snow metamorphism remain poorly documented. For this purpose, monitoring of the isotopic composition (d18O, dD) of near-surface water vapor, precipitation and samples of the top (0.5 cm) snow surface has been conducted during two summers (2011-2012) at NEEM, NW Greenland. The samples also include a subset of 17O-excess measurements over 4 days, and the measurements span the 2012 Greenland heat wave. Our observations are consistent with calculations assuming isotopic equilibrium between surface snow and water vapor. We observe a strong correlation between near-surface vapor d18O and air temperature (0.85 ± 0.11‰ °C-1 (R = 0.76) for 2012). The correlation with air temperature is not observed in precipitation data or surface snow data. Deuterium excess (d-excess) is strongly anti-correlated with d18O with a stronger slope for vapor than for precipitation and snow surface data. During nine 1-5-day periods between precipitation events, our data demonstrate parallel changes of d18O and d-excess in surface snow and near-surface vapor. The changes in d18O of the vapor are similar or larger than those of the snow d18O. It is estimated using the CROCUS snow model that 6 to 20% of the surface snow mass is exchanged with the atmosphere. In our data, the sign of surface snow isotopic changes is not related to the sign or magnitude of sublimation or deposition. Comparisons with atmospheric models show that day-to-day variations in near-surface vapor isotopic composition are driven by synoptic variations and changes in air mass trajectories and distillation histories. We suggest that, in between precipitation events, changes in the surface snow isotopic composition are driven by these changes in near-surface vapor isotopic composition. This is consistent with an estimated 60% mass turnover of surface snow per day driven by snow recrystallization processes under NEEM summer surface snow temperature gradients. Our findings have implications for ice core data interpretation and model-data comparisons, and call for further process studies. © Author(s) 2014
The Antarctic ice core chronology (AICC2012): an optimized multi-parameter and multi-site dating approach for the last 120 thousand years
The deep polar ice cores provide reference records commonly employed in global correlation of past climate events. However, temporal divergences reaching up to several thousand years (ka) exist between ice cores over the last climatic cycle. In this context, we are hereby introducing the Antarctic Ice Core Chronology 2012 (AICC2012), a new and coherent timescale developed for four Antarctic ice cores, namely Vostok, EPICA Dome C (EDC), EPICA Dronning Maud Land (EDML) and Talos Dome (TALDICE), alongside the Greenlandic NGRIP record. The AICC2012 timescale has been constructed using the Bayesian tool Datice (Lemieux-Dudon et al., 2010) that combines glaciological inputs and data constraints, including a wide range of relative and absolute gas and ice stratigraphic markers. We focus here on the last 120 ka, whereas the companion paper by Bazin et al. (2013) focuses on the interval 120–800 ka.
Compared to previous timescales, AICC2012 presents an improved timing for the last glacial inception, respecting the glaciological constraints of all analyzed records. Moreover, with the addition of numerous new stratigraphic markers and improved calculation of the lock-in depth (LID) based on δ15N data employed as the Datice background scenario, the AICC2012 presents a slightly improved timing for the bipolar sequence of events over Marine Isotope Stage 3 associated with the seesaw mechanism, with maximum differences of about 600 yr with respect to the previous Datice-derived chronology of Lemieux-Dudon et al. (2010), hereafter denoted LD2010. Our improved scenario confirms the regional differences for the millennial scale variability over the last glacial period: while the EDC isotopic record (events of triangular shape) displays peaks roughly at the same time as the NGRIP abrupt isotopic increases, the EDML isotopic record (events characterized by broader peaks or even extended periods of high isotope values) reached the isotopic maximum several centuries before.
It is expected that the future contribution of both other long ice core records and other types of chronological constraints to the Datice tool will lead to further refinements in the ice core chronologies beyond the AICC2012 chronology. For the time being however, we recommend that AICC2012 be used as the preferred chronology for the Vostok, EDC, EDML and TALDICE ice core records, both over the last glacial cycle (this study), and beyond (following Bazin et al., 2013). The ages for NGRIP in AICC2012 are virtually identical to those of GICC05 for the last 60.2 ka, whereas the ages beyond are independent of those in GICC05modelext (as in the construction of AICC2012, the GICC05modelext was included only via the background scenarios and not as age markers). As such, where issues of phasing between Antarctic records included in AICC2012 and NGRIP are involved, the NGRIP ages in AICC2012 should therefore be taken to avoid introducing false offsets. However for issues involving only Greenland ice cores, there is not yet a strong basis to recommend superseding GICC05modelext as the recommended age scale for Greenland ice cores
High-resolution record of the Northern Hemisphere climate extending into the last interglacial period
Nitrous oxide does not produce a clinically important sparing effect during closed-loop delivered propofol-remifentanil anaesthesia guided by the bispectral index: a randomized multicentre study†‡
Background Nitrous oxide (N2O) offers both hypnotic and analgesic characteristics. We therefore tested the hypothesis that N2O administration decreases the amount of propofol and remifentanil given by a closed-loop automated controller to maintain a similar bispectral index (BIS). Methods In a randomized multicentre double-blind study, patients undergoing elective surgery were randomly assigned to breathe 60% inspired N2O (N2O group) or 40% oxygen (AIR group). Anaesthesia depth was evaluated by the proportion of time where BIS was within the range of 40-60 (BIS40-60). The primary outcomes were propofol and remifentanil consumption, with reductions of 20% in either being considered clinically important. Results A total of 302 patients were randomized to the N2O group and 299 to the AIR group. At similar BIS40-60 [79 (67-86)% vs 76 (65-85)%], N2O slightly decreased propofol consumption [4.5 (3.7-5.5) vs 4.8 (4.0-5.9) mg kg−1 h−1, P=0.032], but not remifentanil consumption [0.17 (0.12-0.23) vs 0.18 (0.14-0.24) µg kg−1 min−1]. For the subgroups of men, at similar BIS40-60 [80 (72-88)% vs 80 (70-87)%], propofol [4.2 (3.4-5.3) vs 4.4 (3.6-5.4) mg kg−1 h−1] and remifentanil [0.19 (0.13-0.25) vs 0.18 (0.15-0.23) µg kg−1 min−1] consumptions were similar in the N2O vs AIR group, respectively. For the subgroups of women, at similar BIS40-60 [76 (64-84)% vs 72 (62-82)%], propofol [4.7 (4.0-5.8) vs 5.3 (4.5-6.6) mg kg−1 h−1, P=0.004] and remifentanil [0.18 (0.13-0.25) vs 0.20 (0.15-0.27) µg kg−1 min−1, P=0.029] consumptions decreased with the co-administration of N2O. Conclusions With automated drug administration titrated to comparable BIS, N2O only slightly reduced propofol consumption and did not reduce remifentanil consumption. There was a minor gender dependence, but not by a clinically important amount. Clinical trial registration This study was registered at ClinicalTrials.gov, number NCT0054720
An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (AICC2012): 120-800 ka
An accurate and coherent chronological framework is essential for the interpretation of climatic and environmental records obtained from deep polar ice cores. Until now, one common ice core age scale had been developed based on an inverse dating method (Datice), combining glaciological modelling with absolute and stratigraphic markers between 4 ice cores covering the last 50 ka (thousands of years before present) (Lemieux-Dudon et al., 2010). In this paper, together with the companion paper of Veres et al. (2013), we present an extension of this work back to 800 ka for the NGRIP, TALDICE, EDML, Vostok and EDC ice cores using an improved version of the Datice tool. The AICC2012 (Antarctic Ice Core Chronology 2012) chronology includes numerous new gas and ice stratigraphic links as well as improved evaluation of background and associated variance scenarios. This paper concentrates on the long timescales between 120–800 ka. In this framework, new measurements of δ18Oatm over Marine Isotope Stage (MIS) 11–12 on EDC and a complete δ18Oatm record of the TALDICE ice cores permit us to derive additional orbital gas age constraints. The coherency of the different orbitally deduced ages (from δ18Oatm, δO2/N2 and air content) has been verified before implementation in AICC2012. The new chronology is now independent of other archives and shows only small differences, most of the time within the original uncertainty range calculated by Datice, when compared with the previous ice core reference age scale EDC3, the Dome F chronology, or using a comparison between speleothems and methane. For instance, the largest deviation between AICC2012 and EDC3 (5.4 ka) is obtained around MIS 12. Despite significant modifications of the chronological constraints around MIS 5, now independent of speleothem records in AICC2012, the date of Termination II is very close to the EDC3 one
Retrieving the paleoclimatic signal from the deeper part of the EPICA Dome C ice core
An important share of paleoclimatic information is buried within the lowermost layers of deep ice cores. Because improving our records further back in time is one of the main challenges in the near future, it is essential to judge how deep these records remain unaltered, since the proximity of the bedrock is likely to interfere both with the recorded temporal sequence and the ice properties. In this paper, we present a multiparametric study (δD-δ18Oice, δ18Oatm, total air content, CO2, CH4, N2O, dust, high-resolution chemistry, ice texture) of the bottom 60 m of the EPICA (European Project for Ice Coring in Antarctica) Dome C ice core from central Antarctica. These bottom layers were subdivided into two distinct facies: the lower 12 m showing visible solid inclusions (basal dispersed ice facies) and the upper 48 m, which we will refer to as the "basal clean ice facies". Some of the data are consistent with a pristine paleoclimatic signal, others show clear anomalies. It is demonstrated that neither large-scale bottom refreezing of subglacial water, nor mixing (be it internal or with a local basal end term from a previous/initial ice sheet configuration) can explain the observed bottom-ice properties. We focus on the high-resolution chemical profiles and on the available remote sensing data on the subglacial topography of the site to propose a mechanism by which relative stretching of the bottom-ice sheet layers is made possible, due to the progressively confining effect of subglacial valley sides. This stress field change, combined with bottom-ice temperature close to the pressure melting point, induces accelerated migration recrystallization, which results in spatial chemical sorting of the impurities, depending on their state (dissolved vs. solid) and if they are involved or not in salt formation. This chemical sorting effect is responsible for the progressive build-up of the visible solid aggregates that therefore mainly originate "from within", and not from incorporation processes of debris from the ice sheet's substrate. We further discuss how the proposed mechanism is compatible with the other ice properties described. We conclude that the paleoclimatic signal is only marginally affected in terms of global ice properties at the bottom of EPICA Dome C, but that the timescale was considerably distorted by mechanical stretching of MIS20 due to the increasing influence of the subglacial topography, a process that might have started well above the bottom ice. A clear paleoclimatic signal can therefore not be inferred from the deeper part of the EPICA Dome C ice core. Our work suggests that the existence of a flat monotonic ice-bedrock interface, extending for several times the ice thickness, would be a crucial factor in choosing a future "oldest ice" drilling location in Antarctica
Cholesterol Corrects Altered Conformation of MHC-II Protein in Leishmania donovani Infected Macrophages: Implication in Therapy
Previously we reported that Kala-azar patients show progressive decrease in serum cholesterol as a function of splenic parasite burden. Splenic macrophages (MΦ) of Leishmania donovani (LD) infected mice show decrease in membrane cholesterol, while LD infected macrophages (I-MΦ) show defective T cell stimulating ability that could be corrected by liposomal delivery of cholesterol. T helper cells recognize peptide antigen in the context of
class II MHC molecule. It is known that the conformation of a large number of membrane proteins is dependent on membrane cholesterol. In this investigation we tried to understand the influence of decreased membrane cholesterol in I-MΦ on the conformation of MHC-II protein and peptide-MHC-II stability, and its bearing on the antigen specific T-cell activatio
- …
