372 research outputs found
The utility of surface magnetic field measurements in the MAGSAT program
To take full advantage of the global, vector, survey by the Magsat satellite, and international program of augmented surface measurements was proposed. For secular variation and upper mantle conductivity the proposed measurements are global. The repeat station measurements for secular variation should be occupied at 2-3 year intervals. A special observing period in November and December of 1979 is proposed during which simultaneous, continuous, global measurements for upper mantle conductivity studies are to be gathered. Finally, it is recommended that the networks in operation during the IMS extend their operation through the Fall of 1980 to provide correlative data useful for high latitude disturbance studies and for crustal conductivity studies
Magsat: A satellite for measuring near earth magnetic fields
Magsat, designed for making measurements of the geomagnetic vector field, is evaluated. For accurate vector measurements the attitude of the fluxgate magnetometer will be determined to about 15 arc-seconds. Expected measurement accuracy will be 6 (gamma) in each component and 3 in magnitude. The Magsat data will be applied to solid earth studies including modeling of the Earth's main magnetic field, delineation of regional magnetic anomalies of crustal origin, and interpretation of those anomalies in terms of geologic and geophysical models. An opportunity will be presented to the scientific community to participate in data use investigations
Initial geomagnetic field model from MAGSAT
Magsat data from magnetically quiet days were used to derive a thirteenth degree and order spherical harmonic geomagnetic field model, MGST(3/80). The model utilized both scalar and vector data and fit that data with standard deviations of 8, 52, 55 and 97 nT for the scalar magnitude, B sub r, B sub theta and B sub phi respectively. When compared with earlier models, the Earth's dipole moment continues to decrease at a rate of about 26 nT/year. Evaluation of earlier models with Magsat data shows that the scalar field at the Magsat epoch is best predicted by the POGO(2/72) model but that the AWC/75 and IGS/75 are better for predicting vector fields
A Geophysical Atlas for Interpretation of Satellite-derived Data
A compilation of maps of global geophysical and geological data plotted on a common scale and projection is presented. The maps include satellite gravity, magnetic, seismic, volcanic, tectonic activity, and mantle velocity anomaly data. The Bibliographic references for all maps are included
The nature of the highest energy cosmic rays
Ultra high energy gamma rays produce electron--positron pairs in interactions
on the geomagnetic field. The pair electrons suffer magnetic bremsstrahlung and
the energy of the primary gamma ray is shared by a bunch of lower energy
secondaries. These processes reflect the structure of the geomagnetic field and
cause experimentally observable effects. The study of these effects with future
giant air shower arrays can identify the nature of the highest energy cosmic
rays as either gamma-rays or nuclei.Comment: 15 pages of RevTeX plus 6 postscript figures, tarred, gzipped and
uuencoded. Subm. to Physical Review
Magnetic signatures of ionospheric and magnetospheric current systems during geomagnetic quiet conditions - An overview
Nitrogen and phosphorus budgets for Iowa and Iowa watersheds
https://ir.uiowa.edu/igs_tis/1046/thumbnail.jp
Recommended from our members
Spectral and spatial decomposition of lithospheric magnetic field models using spherical Slepian functions
Global magnetic field models are typically expressed as spherical-harmonic expansion coefficients. Slepian functions are linear combinations of spherical harmonics that produce new basis functions, which vanish approximately outside chosen geographical boundaries but also remain orthogonal within the spatial region of interest. Hence, they are suitable for decomposing
spherical-harmonic models into portions that have significant magnetic field strength only in selected areas. Slepian functions are spatio-spectrally concentrated, balancing spatial bias and spectral leakage. Here, we employ them as a basis to decompose the global lithospheric
magnetic field model MF7 up to degree and order 72, into two distinct regions. One of the resultant fields is concentrated within the ensemble of continental domains, and the other is localized over its complement, the oceans. Our procedure neatly divides the spectral power at each harmonic degree into two parts. The field over the continents dominates the overall crustal magnetic field, and each region has a distinct power-spectral signature. The oceanic power spectrum is approximately flat, while that of the continental region shows increasing power as the spherical-harmonic degree increases.We provide a further breakdown of the field into smaller, non-overlapping continental and oceanic regions, and speculate on the source of the variability in their spectral signatures
Determination of nutrient salts by automatic methods both in seawater and brackish water: the phosphate blank
9 páginas, 2 tablas, 2 figurasThe main inconvenience in determining nutrients in seawater by automatic methods is simply solved:
the preparation of a suitable blank which corrects the effect of the refractive index change on the recorded
signal. Two procedures are proposed, one physical (a simple equation to estimate the effect) and the other
chemical (removal of the dissolved phosphorus with ferric hydroxide).Support for this work came from CICYT (MAR88-0245 project) and
Conselleria de Pesca de la Xunta de GaliciaPeer reviewe
Sny Magill Nonpoint Source Pollution Monitoring Project : final report
https://ir.uiowa.edu/igs_tis/1047/thumbnail.jp
- …
