52 research outputs found
Adaptive and Phase Selective Spike Timing Dependent Plasticity in Synaptically Coupled Neuronal Oscillators
We consider and analyze the influence of spike-timing dependent plasticity (STDP) on homeostatic states in synaptically coupled neuronal oscillators. In contrast to conventional models of STDP in which spike-timing affects weights of synaptic connections, we consider a model of STDP in which the time lags between pre- and/or post-synaptic spikes change internal state of pre- and/or post-synaptic neurons respectively. The analysis reveals that STDP processes of this type, modeled by a single ordinary differential equation, may ensure efficient, yet coarse, phase-locking of spikes in the system to a given reference phase. Precision of the phase locking, i.e. the amplitude of relative phase deviations from the reference, depends on the values of natural frequencies of oscillators and, additionally, on parameters of the STDP law. These deviations can be optimized by appropriate tuning of gains (i.e. sensitivity to spike-timing mismatches) of the STDP mechanism. However, as we demonstrate, such deviations can not be made arbitrarily small neither by mere tuning of STDP gains nor by adjusting synaptic weights. Thus if accurate phase-locking in the system is required then an additional tuning mechanism is generally needed. We found that adding a very simple adaptation dynamics in the form of slow fluctuations of the base line in the STDP mechanism enables accurate phase tuning in the system with arbitrary high precision. Adaptation operating at a slow time scale may be associated with extracellular matter such as matrix and glia. Thus the findings may suggest a possible role of the latter in regulating synaptic transmission in neuronal circuits
Open Source Brain: A Collaborative Resource for Visualizing, Analyzing, Simulating, and Developing Standardized Models of Neurons and Circuits.
Computational models are powerful tools for exploring the properties of complex biological systems. In neuroscience, data-driven models of neural circuits that span multiple scales are increasingly being used to understand brain function in health and disease. But their adoption and reuse has been limited by the specialist knowledge required to evaluate and use them. To address this, we have developed Open Source Brain, a platform for sharing, viewing, analyzing, and simulating standardized models from different brain regions and species. Model structure and parameters can be automatically visualized and their dynamical properties explored through browser-based simulations. Infrastructure and tools for collaborative interaction, development, and testing are also provided. We demonstrate how existing components can be reused by constructing new models of inhibition-stabilized cortical networks that match recent experimental results. These features of Open Source Brain improve the accessibility, transparency, and reproducibility of models and facilitate their reuse by the wider community.VoRSUNY DownstatePhysiology and PharmacologyNathan Kline Institute for Psychiatric ResearchN/
Clinical response of masitinib mesylate in the treatment of canine macroscopic mast cell tumours
Treatment of 11 dogs with meningoencephalomyelitis of unknown origin with a combination of prednisolone and cytosine arabinoside
Analyse de 120 résultats d’analyses histologiques de mastocytomes cutanés canins et comparaison aux recommandations publiées
Chemical and structural changes in dry-cured hams (Bayonne hams) during processing and effects of the dehairing technique
Chemical and structural changes in dry-cured hams (Bayonne hams) during processing and effects of the dehairing technique
- …
