1,675 research outputs found
Translation-covariant Markovian master equation for a test particle in a quantum fluid
A recently proposed master equation in the Lindblad form is studied with
respect to covariance properties and existence of a stationary solution. The
master equation describes the interaction of a test particle with a quantum
fluid, the so-called Rayleigh gas, and is characterized by the appearance of a
two-point correlation function known as dynamic structure factor, which
reflects symmetry and statistical mechanics properties of the fluid. In the
case of a free gas all relevant physical parameters, such as fugacity, ratio
between the masses, momentum transfer and energy transfer are put into
evidence, giving an exact expansion of the dynamic structure factor. The limit
in which these quantities are small is then considered. In particular in the
Brownian limit a Fokker-Planck equation is obtained in which the corrections
due to quantum statistics can be explicitly evaluated and are given in terms of
the Bose function and the Fermi function .Comment: 18 pages, revtex, no figures, to appear in J. Math. Phy
Time scale, objectivity and irreversibility in quantum mechanics
It is argued that setting isolated systems as primary scope of field theory
and looking at particles as derived entities, the problem of an objective
anchorage of quantum mechanics can be solved and irreversibility acquires a
fundamental role. These general ideas are checked in the case of the Boltzmann
description of a dilute gas.Comment: 13 pages, latex, no figures, to appear in the Proceedings of the XXI
International Colloquium on Group Theoretical Methods in Physics, 1996
(Goslar, Germany
Subdynamics as a mechanism for objective description
The relationship between microsystems and macrosystems is considered in the
context of quantum field formulation of statistical mechanics: it is argued
that problems on foundations of quantum mechanics can be solved relying on this
relationship. This discussion requires some improvement of non-equilibrium
statistical mechanics that is briefly presented.Comment: latex, 15 pages. Paper submitted to Proc. Conference "Mysteries,
Puzzles And Paradoxes In Quantum Mechanics, Workshop on Entanglement And
Decoherence, Palazzo Feltrinelli, Gargnano, Garda Lake, Italy, 20-25
September, 199
On The Importance Of The Interclump Medium For Superionization: O VI Formation In The Wind Of Zeta Puppis
We have studied superionization and X-ray line formation in the spectra of zeta Pup using our new stellar atmosphere code (XCMFGEN) that can be used to simultaneously analyze optical, UV, and X-ray observations. Here, we present results on the formation of the O VI lambda lambda 1032, 1038 doublet. Our simulations, supported by simple theoretical calculations, show that clumped wind models that assume void in the interclump space cannot reproduce the observed O vi profiles. However, enough O vi can be produced if the voids are filled by a low-density gas. The recombination of O vi is very efficient in the dense material, but in the tenuous interclump region an observable amount of O vi can be maintained. We also find that different UV resonance lines are sensitive to different density regimes in z Pup: C IV is almost exclusively formed within the densest regions, while the majority of O vi resides between clumps. N v is an intermediate case, with contributions from both the tenuous gas and clumps
NLTE analysis of spectra: OBA stars
Methods of calculation of NLTE model atmosphere are discussed. The NLTE trace
element procedure is compared with the full NLTE model atmosphere calculation.
Differences between LTE and NLTE atmosphere modeling are evaluated. The ways of
model atom construction are discussed. Finally, modelling of expanding
atmospheres of hot stars with winds is briefly reviewed.Comment: in Determination of Atmospheric Parameters of B-, A-, F- and G-Type
Stars, E. Niemczura et al. eds., Springer, in pres
Dynamical Semigroup Description of Coherent and Incoherent Particle-Matter Interaction
The meaning of statistical experiments with single microsystems in quantum
mechanics is discussed and a general model in the framework of non-relativistic
quantum field theory is proposed, to describe both coherent and incoherent
interaction of a single microsystem with matter. Compactly developing the
calculations with superoperators, it is shown that the introduction of a time
scale, linked to irreversibility of the reduced dynamics, directly leads to a
dynamical semigroup expressed in terms of quantities typical of scattering
theory. Its generator consists of two terms, the first linked to a coherent
wavelike behaviour, the second related to an interaction having a measuring
character, possibly connected to events the microsystem produces propagating
inside matter. In case these events breed a measurement, an explicit
realization of some concepts of modern quantum mechanics ("effects" and
"operations") arises. The relevance of this description to a recent debate
questioning the validity of ordinary quantum mechanics to account for such
experimental situations as, e.g., neutron-interferometry, is briefly discussed.Comment: 22 pages, latex, no figure
Incoherent dynamics in neutron-matter interaction
Coherent and incoherent neutron-matter interaction is studied inside a
recently introduced approach to subdynamics of a macrosystem. The equation
describing the interaction is of the Lindblad type and using the Fermi
pseudopotential we show that the commutator term is an optical potential
leading to well-known relations in neutron optics. The other terms, usually
ignored in optical descriptions and linked to the dynamic structure function of
the medium, give an incoherent contribution to the dynamics, which keeps
diffuse scattering and attenuation of the coherent beam into account, thus
warranting fulfilment of the optical theorem. The relevance of this analysis to
experiments in neutron interferometry is briefly discussed.Comment: 15 pages, revtex, no figures, to appear in Phys. Rev.
Test Particle in a Quantum Gas
A master equation with a Lindblad structure is derived, which describes the
interaction of a test particle with a macroscopic system and is expressed in
terms of the operator valued dynamic structure factor of the system. In the
case of a free Fermi or Bose gas the result is evaluated in the Brownian limit,
thus obtaining a single generator master equation for the description of
quantum Brownian motion in which the correction due to quantum statistics is
explicitly calculated. The friction coefficients for Boltzmann and Bose or
Fermi statistics are compared.Comment: 9 pages, revtex, no figure
Boston Hospitality Review: Spring 2016
Understanding the Momentum and Motivations of Foreign Investors in U.S. Hospitality by Ken Wilson and Liya Ma -- Creating Memorable Experiences: How hotels can fight back against Airbnb and other sharing economy providers by Makarand Mody -- Rebranding Before the Digital Age: 4 Strategies Used by the Sheraton New York Hotel and Towers During the 1992 Democratic National Convention by Leora Halpern Lanz, Juan Lesmes, and Erinn Tucker -- Federal Minimum Wage Debate: Are Gubernatorial Politics Behind a Hotel Line Employee Wage? by Nicholas Thomas and Eric Brown -- Rethinking Substance Use and Abuse Among Hospitality Employees by Amir Shani -- Consumers’ Desires in Hostels: Addressing Latent
and Explicit Needs in United States Hostels by Emily Horto
- …
