37 research outputs found

    Multi-level suppression of receptor-PI3K-mTORC1 by fatty acid synthase inhibitors is crucial for their efficacy against ovarian cancer cells

    Get PDF
    Receptor-PI3K-mTORC1 signaling and fatty acid synthase (FASN)-regulated lipid biosynthesis harbor numerous drug targets and are molecularly connected. We hypothesize that unraveling the mechanisms of pathway cross-talk will be useful for designing novel co-targeting strategies for ovarian cancer (OC). The impact of receptor-PI3K-mTORC1 onto FASN is already well-characterized. However, reverse actions–from FASN towards receptor-PI3K-mTORC1–are still elusive. We show that FASN-blockade impairs receptor-PI3K-mTORC1 signaling at multiple levels. Thin-layer chromatography and MALDI-MS/MS reveals that FASN-inhibitors (C75, G28UCM) augment polyunsaturated fatty acids and diminish signaling lipids diacylglycerol (DAG) and phosphatidylinositol 3,4,5-trisphosphate (PIP3) in OC cells (SKOV3, OVCAR-3, A2780, HOC-7). Western blotting and micropatterning demonstrate that FASN-blockers impair phosphorylation/expression of EGF-receptor/ERBB/HER and decrease GRB2–EGF-receptor recruitment leading to PI3K-AKT suppression. FASN-inhibitors activate stress response-genes HIF-1α-REDD1 (RTP801/DIG2/DDIT4) and AMPKα causing mTORC1- and S6-repression. We conclude that FASN-inhibitor-mediated blockade of receptor-PI3K-mTORC1 occurs due to a number of distinct but cooperating processes. Moreover, decrease of PI3K-mTORC1 abolishes cross-repression of MEK-ERK causing ERK activation. Consequently, the MEK-inhibitor selumetinib/AZD6244, in contrast to the PI3K/mTOR-inhibitor dactolisib/NVP-BEZ235, increases growth inhibition when given together with a FASN-blocker. We are the first to provide deep insight on how FASN-inhibition blocks ERBB-PI3K-mTORC1 activity at multiple molecular levels. Moreover, our data encourage therapeutic approaches using FASN-antagonists together with MEK-ERK-inhibitors

    The Use of Agricultural Residues, Wood Briquettes and Logs for Small-Scale Domestic Heating

    Get PDF
    Large amounts of agricultural residues are produced annually in the UK alone, which presents a significant biomass energy resource. It has limited availability in briquetted form in the UK but is widely used, particularly in Asia. The aim of this work is to assess the emission from briquetted agricultural residues to wood fuel, including commercial wood briquettes, when utilised in a 5 kW domestic heating stove. Other straw-type materials, sugarcane bagasse, Miscanthus, were also investigated. The combustion behaviour depended on the chemical and physical nature of the briquettes. Results indicate that fuel choice is an important consideration for emission reduction. Fuel-N directly correlates to emitted NOx and all the fuels studied had NOx emissions below the EU regulation limit. While agricultural residues can be relatively high in Cl and S, there is evidence of in-situ capture of HCl and SO2 by calcium salts in the fuel ash. Particulate emissions correlate with the volatile matter in the fuel, but also are influenced by the quality/durability of the briquette. The briquettes performed well compared to wood logs, and while there is a fuel-type influence on emissions, it is also clear that briquettes from optimised manufacture can be lower emitting than wood logs

    Photoluminescence at 1.5 μm of heavily Er-doped insulating films on Si

    No full text
    corecore