789 research outputs found

    Magnetic versus nonmagnetic doping effects on the magnetic ordering in the Haldane chain compound PbNi2V2O8

    Full text link
    A study of an impurity driven phase-transition into a magnetically ordered state in the spin-liquid Haldane chain compound PbNi2V2O8 is presented. Both, macroscopic magnetization as well as 51V nuclear magnetic resonance (NMR) measurements reveal that the spin nature of dopants has a crucial role in determining the stability of the induced long-range magnetic order. In the case of nonmagnetic (Mg2+) doping on Ni2+ spin sites (S=1) a metamagnetic transition is observed in relatively low magnetic fields. On the other hand, the magnetic order in magnetically (Co2+) doped compounds survives at much higher magnetic fields and temperatures, which is attributed to a significant anisotropic impurity-host magnetic interaction. The NMR measurements confirm the predicted staggered nature of impurity-liberated spin degrees of freedom, which are responsible for the magnetic ordering. In addition, differences in the broadening of the NMR spectra and the increase of nuclear spin-lattice relaxation in doped samples, indicate a diverse nature of electron spin correlations in magnetically and nonmagnetically doped samples, which begin developing at rather high temperatures with respect to the antiferromagnetic phase transition.Comment: 10 pages, 7 figure

    A two-dimensional, two-electron model atom in a laser pulse: exact treatment, single active electron-analysis, time-dependent density functional theory, classical calculations, and non-sequential ionization

    Get PDF
    Owing to its numerical simplicity, a two-dimensional two-electron model atom, with each electron moving in one direction, is an ideal system to study non-perturbatively a fully correlated atom exposed to a laser field. Frequently made assumptions, such as the ``single active electron''- approach and calculational approximations, e.g. time dependent density functional theory or (semi-) classical techniques, can be tested. In this paper we examine the multiphoton short pulse-regime. We observe ``non-sequential'' ionization, i.e.\ double ionization at lower field strengths as expected from a sequential, single active electron-point of view. Since we find non-sequential ionization also in purely classical simulations, we are able to clarify the mechanism behind this effect in terms of single particle trajectories. PACS Number(s): 32.80.RmComment: 10 pages, 16 figures (gzipped postscript), see also http://www.physik.tu-darmstadt.de/tqe

    Semiclassical description of multiphoton processes

    Get PDF
    We analyze strong field atomic dynamics semiclassically, based on a full time-dependent description with the Hermann-Kluk propagator. From the properties of the exact classical trajectories, in particular the accumulation of action in time, the prominent features of above threshold ionization (ATI) and higher harmonic generation (HHG) are proven to be interference phenomena. They are reproduced quantitatively in the semiclassical approximation. Moreover, the behavior of the action of the classical trajectories supports the so called strong field approximation which has been devised and postulated for strong field dynamics.Comment: 10 pages, 11 figure

    Direct thrust measurement of a permanent magnet helicon double layer thruster

    No full text
    Direct thrust measurements of a permanent magnet helicon double layer thruster have been made using a pendulum thrust balance and a high sensitivity laser displacement sensor. At the low pressures used (0.08 Pa) an ion beam is detected downstream of the thruster exit, and a maximum thrust force of about 3 mN is measured for argon with an rf input power of about 700 W. The measured thrust is proportional to the upstream plasma density and is in good agreement with the theoretical thrust based on the maximum upstream electron pressure

    Mesoscopic Phase Separation in Anisotropic Superconductors

    Full text link
    General properties of anisotropic superconductors with mesoscopic phase separation are analysed. The main conclusions are as follows: Mesoscopic phase separation can be thermodynamically stable only in the presence of repulsive Coulomb interactions. Phase separation enables the appearance of superconductivity in a heterophase sample even if it were impossible in pure-phase matter. Phase separation is crucial for the occurrence of superconductivity in bad conductors. Critical temperature for a mixture of pairing symmetries is higher than the critical temperature related to any pure gap-wave symmetry of this mixture. In bad conductors, the critical temperature as a function of the superconductivity fraction has a bell shape. Phase separation makes the single-particle energy dispersion softer. For planar structures phase separation suppresses d-wave superconductivity and enhances s-wave superconductivity. These features are in agreement with experiments for cuprates.Comment: Revtex file, 25 pages, 2 figure

    The Myth of the Angry Atheist

    Get PDF
    Atheists are often portrayed in the media and elsewhere as angry individuals. Although atheists disagree with the pillar of many religions, namely the existence of a God, it may not necessarily be the case that they are angry individuals. The prevalence and accuracy of angry-atheist perceptions were examined in 7 studies with 1,677 participants from multiple institutions and locations in the United States. Studies 1–3 revealed that people believe atheists are angrier than believers, people in general, and other minority groups, both explicitly and implicitly. Studies 4–7 then examined the accuracy of these beliefs. Belief in God, state anger, and trait anger were assessed in multiple ways and contexts. None of these studies supported the idea that atheists are particularly angry individuals. Rather, these results support the idea that people believe atheists are angry individuals, but they do not appear to be angrier than other individuals in reality

    IL RUOLO DEI PUNTI VENDITA COME STRUMENTO DI IMMAGINE DI MARCA NEL MERCATO CINESE

    Get PDF
    Preeclampsia (PE) and intrauterine growth restriction (IUGR) are major obstetric health problems. Higher levels of T-helper (Th) 1 (proinflammatory) cytokines have been observed in pregnancies complicated with PE and IUGR; this is in contrast to the predominant Th2 (anti-inflammatory) cytokine environment found in uncomplicated pregnancies. Myostatin is best known as a negative regulator of muscle development and reportedly has a role in fat deposition, glucose metabolism, and cytokine modulation (outside the placenta). Myostatin concentrations in plasma and protein expression in placental tissue are significantly higher in women with PE. Expression of myostatin in IUGR and PE-IUGR and the effect of this protein on the cytokine production from the placenta is unknown. In the current study, significant differences were identified in the expression of myostatin in pregnancies complicated with IUGR, PE, and PE with IUGR. Furthermore, cytokine production by first-trimester placental tissues was altered following myostatin treatment.</p

    Generation of attosecond xuv pulses in strong laser-atom interactions

    Get PDF
    The generation of radiation pulses that can be as short as 120 attoseconds is demonstrated theoretically. We have employed a two-dimensional exact solution of the Schrodinger equation that allows for arbitrary laser ellipticity. By manipulating the laser ellipticity in time, it is shown that one can control the wave-packet dynamics of the ejected atomic electron. The nonlinear interaction of the electron with the atomic core can thus be restricted to extremely short times. Photon energies up to 160 eV are generated. It is also shown that with a higher laser frequency, even shorter pulses can be produced. [S1050-2947(98)02211-2]
    corecore