2,646 research outputs found
Naturally-phasematched second harmonic generation in a whispering gallery mode resonator
We demonstrate for the first time natural phase matching for optical
frequency doubling in a high-Q whispering gallery mode resonator made of
Lithium Niobate. A conversion efficiency of 9% is achieved at 30 micro Watt
in-coupled continuous wave pump power. The observed saturation pump power of
3.2 mW is almost two orders of magnitude lower than the state-of-the-art. This
suggests an application of our frequency doubler as a source of non-classical
light requiring only a low-power pump, which easily can be quantum noise
limited. Our theoretical analysis of the three-wave mixing in a whispering
gallery mode resonator provides the relative conversion efficiencies for
frequency doubling in various modes
Analysis of optical properties of strained semiconductor quantum dots for electromagnetically induced transparency
Using multiband k*p theory we study the size and geometry dependence on the
slow light properties of conical semiconductor quantum dots. We find the V-type
scheme for electromagnetically induced transparency (EIT) to be most favorable,
and identify an optimal height and size for efficient EIT operation. In case of
the ladder scheme, the existence of additional dipole allowed intraband
transitions along with an almost equidistant energy level spacing adds
additional decay pathways, which significantly impairs the EIT effect. We
further study the influence of strain and band mixing comparing four different
k*p band structure models. In addition to the separation of the heavy and light
holes due to the biaxial strain component, we observe a general reduction in
the transition strengths due to energy crossings in the valence bands caused by
strain and band mixing effects. We furthermore find a non-trivial quantum dot
size dependence of the dipole moments directly related to the biaxial strain
component. Due to the separation of the heavy and light holes the optical
transition strengths between the lower conduction and upper most valence-band
states computed using one-band model and eight-band model show general
qualitative agreement, with exceptions relevant for EIT operation.Comment: 9 pages, 12 figure
A highly efficient two level diamond based single photon source
An unexplored diamond defect centre which is found to emit stable single
photons at a measured rate of 1.6 MHz at room temperature is reported. The
novel centre, identified in chemical vapour deposition grown diamond crystals,
exhibits a sharp zero phonon line at 734 nm with a full width at half maximum
of ~ 4 nm. The photon statistics confirm the center is a single emitter and
provides direct evidence of the first true two-level single quantum system in
diamond.Comment: 3 pages, 4 figure
Continuous variable entanglement distillation of Non-Gaussian Mixed States
Many different quantum information communication protocols such as
teleportation, dense coding and entanglement based quantum key distribution are
based on the faithful transmission of entanglement between distant location in
an optical network. The distribution of entanglement in such a network is
however hampered by loss and noise that is inherent in all practical quantum
channels. Thus, to enable faithful transmission one must resort to the protocol
of entanglement distillation. In this paper we present a detailed theoretical
analysis and an experimental realization of continuous variable entanglement
distillation in a channel that is inflicted by different kinds of non-Gaussian
noise. The continuous variable entangled states are generated by exploiting the
third order non-linearity in optical fibers, and the states are sent through a
free-space laboratory channel in which the losses are altered to simulate a
free-space atmospheric channel with varying losses. We use linear optical
components, homodyne measurements and classical communication to distill the
entanglement, and we find that by using this method the entanglement can be
probabilistically increased for some specific non-Gaussian noise channels
Gaussian Error Correction of Quantum States in a Correlated Noisy Channel
Noise is the main obstacle for the realization of fault tolerant quantum
information processing and secure communication over long distances. In this
work, we propose a communication protocol relying on simple linear optics that
optimally protects quantum states from non-Markovian or corre- lated noise. We
implement the protocol experimentally and demonstrate the near ideal protection
of coherent and entangled states in an extremely noisy channel. Since all
real-life channels are exhibit- ing pronounced non-Markovian behavior, the
proposed protocol will have immediate implications in improving the performance
of various quantum information protocols.Comment: New references adde
MPCVD processing of titanium-diffused LiNbO3 waveguides: optical characterisation and waveguide restoration
This paper presents some initial findings that explore the material properties of LiNbO3 which has been exposed to a microwave plasma-enhanced chemical vapor deposition (MPCVD) environment. The LiNbO3 was found to undergo a process known as 'reduction' when exposed to this environment. A technique was developed to reverse this process and recover the LiNbO3, which is a crucial first step towards the integration of diamond-based single photon sources with LiNbO3 waveguide technologies
Precision mass measurements of magnesium isotopes and implications on the validity of the Isobaric Mass Multiplet Equation
If the mass excess of neutron-deficient nuclei and their neutron-rich mirror
partners are both known, it can be shown that deviations of the Isobaric Mass
Multiplet Equation (IMME) in the form of a cubic term can be probed. Such a
cubic term was probed by using the atomic mass of neutron-rich magnesium
isotopes measured using the TITAN Penning trap and the recently measured
proton-separation energies of Cl and Ar. The atomic mass of
Mg was found to be within 1.6 of the value stated in the Atomic
Mass Evaluation. The atomic masses of Mg were measured to be both
within 1, while being 8 and 34 times more precise, respectively. Using
the Mg mass excess and previous measurements of Cl we uncovered a
cubic coefficient of = 28(7) keV, which is the largest known cubic
coefficient of the IMME. This departure, however, could also be caused by
experimental data with unknown systematic errors. Hence there is a need to
confirm the mass excess of S and the one-neutron separation energy of
Cl, which have both come from a single measurement. Finally, our results
were compared to ab initio calculations from the valence-space in-medium
similarity renormalization group, resulting in a good agreement.Comment: 7 pages, 3 figure
Atomic spectroscopy studies of short-lived isotopes and nuclear isomer separation with the ISOLDE RILIS
The Resonance Ionization Laser Ion Source (RILIS) at the ISOLDE on-line isotope separator is based on the selective excitation of atomic transitions by tunable laser radiation. Ion beams of isotopes of 20 elements have been produced using the RILIS setup. Together with the mass separator and a particle detection system it represents a tool for high-sensitive laser spectroscopy of short-lived isotopes. By applying narrow-bandwidth lasers for the RILIS one can study isotope shifts (IS) and hyperfine structure (HFS) of atomic optical transitions. Such measurements are capable of providing data on nuclear charge radii, spins and magnetic moments of exotic nuclides far from stability. Although the Doppler broadening of the optical absorption lines limits the resolution of the technique, the accuracy of the HFS measurements examined in experiments with stable Tl isotopes approaches a value of 100 MHz. Due to the hyperfine splitting of atomic lines the RILIS gives an opportunity to separate nuclear isomers. Isomer selectivity of the RILIS has been used in studies of short-lived Ag, Cu and Pb isotopes
The interaction of 11Li with 208Pb
Background: 11Li is one of the most studied halo nuclei. The fusion of 11Li
with 208Pb has been the subject of a number of theoretical studies with widely
differing predictions, ranging over four orders of magnitude, for the fusion
excitation function.
Purpose: To measure the excitation function for the 11Li + 208Pb reaction.
Methods: A stacked foil/degrader assembly of 208Pb targets was irradiated
with a 11Li beam producing center of target beam energies from above barrier to
near barrier energies (40 to 29 MeV). The intensity of the 11Li beam (chopped)
was 1250 p/s and the beam on-target time was 34 hours. The alpha-decay of the
stopped evaporation residues was detected in a alpha-detector array at each
beam energy in the beam-off period (the beam was on for <= 5 ns and then off
for 170 ns).
Results: The 215At evaporation residues were associated with the fusion of
11Li with 208Pb. The 213,214At evaporation residues were formed by the breakup
of 11Li into 9Li + 2n, with the 9Li fusing with 208Pb. The 214At evaporation
residue appears to result from a "quasi-breakup" process.
Conclusions: Most of 11Li + 208Pb interactions lead to breakup with a small
fraction (<= 11%) leading to complete fusion.Comment: 25 pages, 11 figure
- …
