110 research outputs found
Ultra-High-density 3D vertical RRAM with stacked JunctionLess nanowires for In-Memory-Computing applications
The Von-Neumann bottleneck is a clear limitation for data-intensive
applications, bringing in-memory computing (IMC) solutions to the fore. Since
large data sets are usually stored in nonvolatile memory (NVM), various
solutions have been proposed based on emerging memories, such as OxRAM, that
rely mainly on area hungry, one transistor (1T) one OxRAM (1R) bit-cell. To
tackle this area issue, while keeping the programming control provided by 1T1R
bit-cell, we propose to combine gate-all-around stacked junctionless nanowires
(1JL) and OxRAM (1R) technology to create a 3-D memory pillar with ultrahigh
density. Nanowire junctionless transistors have been fabricated, characterized,
and simulated to define current conditions for the whole pillar. Finally, based
on Simulation Program with Integrated Circuit Emphasis (SPICE) simulations, we
demonstrated successfully scouting logic operations up to three-pillar layers,
with one operand per layer
Thermoremanence acquisition and demagnetization for titanomagnetite under lithospheric pressures
©2017. American Geophysical Union.The geological sources of large-scale lithospheric magnetic field anomalies are poorly constrained. Understanding the magnetic behavior of rocks and minerals under the pressures and temperatures encountered at large crustal depths is particularly important in that task. The impact of lithospheric pressure is not well known and most of the time neglected in numerical models of the geological sources of magnetic anomalies. We present thermal remanent magnetization (TRM) acquisition and stepwise thermal demagnetization on synthetic titanomagnetite dispersed powder, within an amagnetic cell under hydrostatic pressure up to 1 GPa. TRM is measured after thermal cycling within a cryogenic magnetometer. Pressure-dependent increase in the Curie temperature (initially in the 50-70°C range) is observed, mostly between 0.3 and 0.6 GPa, on the order of 20 K/GPa. TRM intensity also increases with pressure up to 200% at 675 MPa, although the pressure variation with temperature inside the cell complicates the interpretation
Decrypting magnetic fabrics (AMS, AARM, AIRM) through the analysis of mineral shape fabrics and distribution anisotropy
The fieldwork was supported by the DIPS project (grant no. 240467) and the MIMES project (grant no. 244155) funded by the Norwegian Research Council awarded to O.G. O.P.'s position was funded from Y-TEC.Anisotropy of magnetic susceptibility (AMS) and anisotropy of magnetic remanence (AARM and AIRM) are efficient and versatile techniques to indirectly determine rock fabrics. Yet, deciphering the source of a magnetic fabric remains a crucial and challenging step, notably in the presence of ferrimagnetic phases. Here we use X-ray micro-computed tomography to directly compare mineral shape-preferred orientation and spatial distribution fabrics to AMS, AARM and AIRM fabrics from five hypabyssal trachyandesite samples. Magnetite grains in the trachyandesite are euhedral with a mean aspect ratio of 1.44 (0.24 s.d., long/short axis), and > 50% of the magnetite grains occur in clusters, and they are therefore prone to interact magnetically. Amphibole grains are prolate with magnetite in breakdown rims. We identified three components of the petrofabric that influence the AMS of the analyzed samples: the magnetite and the amphibole shape fabrics and the magnetite spatial distribution. Depending on their relative strength, orientation and shape, these three components interfere either constructively or destructively to produce the AMS fabric. If the three components are coaxial, the result is a relatively strongly anisotropic AMS fabric (P’ = 1.079). If shape fabrics and/or magnetite distribution are non-coaxial, the resulting AMS is weakly anisotropic (P’ = 1.012). This study thus reports quantitative petrofabric data that show the effect of magnetite distribution anisotropy on magnetic fabrics in igneous rocks, which has so far only been predicted by experimental and theoretical models. Our results have first-order implications for the interpretation of petrofabrics using magnetic methods.Publisher PDFPeer reviewe
Phase relationships in grunerite-garnet-bearing amphibolites in the system CFMASH, with applications to metamorphic rocks from the Central Zone of the Limpopo Belt, South Africa
Volcanic ash in bare ice south of Sør Rondane Mountains, Antarctica: geochemistry, rock magnetism and nondestructive magnetic detection with SQUID gradiometer
Trimethylamine and Trimethylamine N-Oxide, a Flavin-Containing Monooxygenase 3 (FMO3)-Mediated Host-Microbiome Metabolic Axis Implicated in Health and Disease
Flavin-containing monooxygenase 3 (FMO3) is known primarily as an enzyme involved in the metabolism of therapeutic drugs. However, on a daily basis we are exposed to one of the most abundant substrates of the enzyme, trimethylamine, which is released from various dietary components by the action of gut bacteria. FMO3 converts the odorous trimethylamine to non-odorous trimethylamine N-oxide, which is excreted in urine. Impaired FMO3 activity gives rise to the inherited disorder primary trimethylaminuria. Affected individuals cannot produce trimethylamine N-oxide and, consequently, excrete large amounts of trimethylamine. A dysbiosis in gut bacteria can give rise to secondary trimethylaminuria. Recently, there has been much interest in FMO3 and its catalytic product trimethylamine N-oxide. This is because trimethylamine N-oxide has been implicated in various conditions affecting health, including cardiovascular disease, reverse cholesterol transport and glucose and lipid homeostasis. In this review, we consider the dietary components that can give rise to trimethylamine, the gut bacteria involved in the production of trimethylamine from dietary precursors, the metabolic reactions by which bacteria produce and utilize trimethylamine and the enzymes that catalyze the reactions. Also included is information on bacteria that produce trimethylamine in the oral cavity and vagina, two key microbiome niches that can influence health. Finally, we discuss the importance of the trimethylamine/trimethylamine N-oxide microbiome-host axis in health and disease, considering factors that affect bacterial production and host metabolism of trimethylamine, the involvement of trimethylamine N-oxide and FMO3 in disease and the implications of the host-microbiome axis for management of trimethylaminuria
A Flexible Modeling and Simulation Framework for Design Space Exploration
International audienceApplications like 4G baseband modem require single-chip implementation to meet the integration and the power consumption requirements. These applications involve a high computation performance with real-time constraints, low power consumption and low cost. The concept of MPSoC is well suited to this problem. It makes it possible to adjust the architecture, by allocating the computational power where it is needed to fit the application needs. This often implies that the software has to be developed at the same time the platform is refined. Algorithm designers need accurate performance estimation to guide their decisions and system architects need to provide a design with enough calculation capacity and flexibility. Based on the methodology used for the design of the 4G FAUST chipset, this paper presents a modeling and simulation framework for Design Space Exploration (DSE) which enables a rapid evaluation of the application-to-platform adequation. The key element of this work is a simple and flexible way of modeling application and architecture. Our SystemC-based simulation environment can support a broad range of architecture components (ASIC, DSP, NoC, bus, shared or distributed memory, ...) and application features (control flow, data exchange, interrupts, data-dependent processing, dynamic reconfiguration). Application and architecture models are separated to allow independent design space exploration. The simulation basically executes the algorithms on the architecture and monitors dynamic behavior such as communication transfers, resource conflicts, starvation, dynamic reconfiguration, etc
Comment on 'Mexican Peridotite Xenoliths and Tectonic Terranes: Correlations among Vent Location, Texture, Temperature, Pressure, and Oxygen Fugacity' by J. F. Luhr & J. J. Aranda-Gomez (1997)
A Data Dependent Architecture Based on Seeded Region Growing Strategy for Advanced Morphological Operators
- …
