3,268 research outputs found

    Hierarchy of boundary driven phase transitions in multi-species particle systems

    Full text link
    Interacting systems with KK driven particle species on a open chain or chains which are coupled at the ends to boundary reservoirs with fixed particle densities are considered. We classify discontinuous and continuous phase transitions which are driven by adiabatic change of boundary conditions. We build minimal paths along which any given boundary driven phase transition (BDPT) is observed and reveal kinetic mechanisms governing these transitions. Combining minimal paths, we can drive the system from a stationary state with all positive characteristic speeds to a state with all negative characteristic speeds, by means of adiabatic changes of the boundary conditions. We show that along such composite paths one generically encounters ZZ discontinuous and 2(KZ)2(K-Z) continuous BDPTs with ZZ taking values 0ZK0\leq Z\leq K depending on the path. As model examples we consider solvable exclusion processes with product measure states and K=1,2,3K=1,2,3 particle species and a non-solvable two-way traffic model. Our findings are confirmed by numerical integration of hydrodynamic limit equations and by Monte Carlo simulations. Results extend straightforwardly to a wide class of driven diffusive systems with several conserved particle species.Comment: 12 pages, 11 figure

    Application of approximation theory by nonlinear manifolds in Sturm-Liouville inverse problems

    Full text link
    We give here some negative results in Sturm-Liouville inverse theory, meaning that we cannot approach any of the potentials with m+1m+1 integrable derivatives on R+\mathbb{R}^+ by an ω\omega-parametric analytic family better than order of (ωlnω)(m+1)(\omega\ln\omega)^{-(m+1)}. Next, we prove an estimation of the eigenvalues and characteristic values of a Sturm-Liouville operator and some properties of the solution of a certain integral equation. This allows us to deduce from [Henkin-Novikova] some positive results about the best reconstruction formula by giving an almost optimal formula of order of ωm\omega^{-m}.Comment: 40 page

    Discriminants, symmetrized graph monomials, and sums of squares

    Full text link
    Motivated by the necessities of the invariant theory of binary forms J. J. Sylvester constructed in 1878 for each graph with possible multiple edges but without loops its symmetrized graph monomial which is a polynomial in the vertex labels of the original graph. In the 20-th century this construction was studied by several authors. We pose the question for which graphs this polynomial is a non-negative resp. a sum of squares. This problem is motivated by a recent conjecture of F. Sottile and E. Mukhin on discriminant of the derivative of a univariate polynomial, and an interesting example of P. and A. Lax of a graph with 4 edges whose symmetrized graph monomial is non-negative but not a sum of squares. We present detailed information about symmetrized graph monomials for graphs with four and six edges, obtained by computer calculations

    A Journey of Pregnancy Loss: From Positivism to Autoethnography

    Get PDF
    When a dissertation research project exploring the impact of mind - body practices on symptoms of depression and anxiety in pregnant women with a history of miscarriage failed to yield statistically significant results, I struggled with how to demonstrate that I had gleaned knowledge from this project of nearly 3 years. When a series of parallel pregnancy losses occurred in my own life, I realized that I am heavily situated within the context of my research and need to consider my data in a different sense; one that acknowledges my own self within this process while attempting to capture the lived experiences of others. The shift to autoethnography afforded me the opportunity to demonstrate that knowledge can be generated through multiple methodologies, with one approach not being privileged over another. As this dissertation moved from an empirical study to a qualitative, autoethnographic piece, I was able to identify themes surfacing from the literature, my own experiences and participation in a pregnancy loss support group. The themes discussed include: making meaning from the experience, granting personhood status and grieving and other emotional expression

    ``Good Propagation'' Constraints on Dual Invariant Actions in Electrodynamics and on Massless Fields

    Get PDF
    We present some consequences of non-anomalous propagation requirements on various massless fields. Among the models of nonlinear electrodynamics we show that only Maxwell and Born-Infeld also obey duality invariance. Separately we show that, for actions depending only on the F_\mn^2 invariant, the permitted models have L1+F2L \sim \sqrt{1 + F^2}. We also characterize acceptable vector-scalar systems. Finally we find that wide classes of gravity models share with Einstein the null nature of their characteristic surfaces.Comment: 11 pages, LaTeX, no figure

    Laser-like Instabilities in Quantum Nano-electromechanical Systems

    Full text link
    We discuss negative damping regimes in quantum nano-electromechanical systems formed by coupling a mechanical oscillator to a single-electron transistor (normal or superconducting). Using an analogy to a laser with a tunable atom-field coupling, we demonstrate how these effects scale with system parameters. We also discuss the fluctuation physics of both the oscillator and the single-electron transistor in this regime, and the degree to which the oscillator motion is coherent.Comment: 4+ pages, 1 figure; reference to the work of Dykman and Krivoglaz adde

    Efficient Algorithm for Asymptotics-Based Configuration-Interaction Methods and Electronic Structure of Transition Metal Atoms

    Full text link
    Asymptotics-based configuration-interaction (CI) methods [G. Friesecke and B. D. Goddard, Multiscale Model. Simul. 7, 1876 (2009)] are a class of CI methods for atoms which reproduce, at fixed finite subspace dimension, the exact Schr\"odinger eigenstates in the limit of fixed electron number and large nuclear charge. Here we develop, implement, and apply to 3d transition metal atoms an efficient and accurate algorithm for asymptotics-based CI. Efficiency gains come from exact (symbolic) decomposition of the CI space into irreducible symmetry subspaces at essentially linear computational cost in the number of radial subshells with fixed angular momentum, use of reduced density matrices in order to avoid having to store wavefunctions, and use of Slater-type orbitals (STO's). The required Coulomb integrals for STO's are evaluated in closed form, with the help of Hankel matrices, Fourier analysis, and residue calculus. Applications to 3d transition metal atoms are in good agreement with experimental data. In particular we reproduce the anomalous magnetic moment and orbital filling of Chromium in the otherwise regular series Ca, Sc, Ti, V, Cr.Comment: 14 pages, 1 figur
    corecore