2,707 research outputs found
Management system requirements for wireless systems beyond 3G
This paper presents a comprehensive description of various management system requirements for systems beyond 3G, which have been identified as a result of the Software Based Systems activities within the Mobile VCE Core 2 program. Specific requirements for systems beyond 3G are discussed and potential technologies to address them proposed. The analysis has been carried out from network, service and security viewpoints
Backscatter Transponder Based on Frequency Selective Surface for FMCW Radar Applications
This paper describes an actively-controlled frequency selective surface (FSS) to implement a backscatter transponder. The FSS is composed by dipoles loaded with switching PIN diodes. The transponder exploits the change in the radar cross section (RCS) of the FSS with the bias of the diodes to modulate the backscattered response of the tag to the FMCW radar. The basic operation theory of the system is explained here. An experimental setup based on a commercial X-band FMCW radar working as a reader is proposed to measure the transponders. The transponder response can be distinguished from the interference of non-modulated clutter, modulating the transponder’s RCS. Some FSS with different number of dipoles are studied, as a proof of concept. Experimental results at several distances are provided
Monte Carlo tomographic reconstruction in SPECT impact of bootstrapping and number of generated events
In Single Photon Emission Computed Tomography (SPECT), 3D images usually
reconstructed by performing a set of bidimensional (2D) analytical or iterative
reconstructions can also be reconstructed using an iterative reconstruction
algorithm involving a 3D projector. Accurate Monte Carlo (MC) simulations
modeling all the physical effects that affect the imaging process can be used
to estimate this projector. However, the accuracy of the projector is affected
by the stochastic nature of MC simulations. In this paper, we study the
accuracy of the reconstructed images with respect to the number of simulated
histories used to estimate the MC projector. Furthermore, we study the impact
of applying the bootstrapping technique when estimating the projectorComment: 15 pages, 9 figures, 2 table
The XMM-Newton Slew Survey: towards the XMMSL1 catalogue
The XMM-Newton satellite is the most sensitive X-ray observatory flown to
date due to the great collecting area of its mirrors coupled with the high
quantum efficiency of the EPIC detectors. It performs slewing manoeuvers
between observation targets tracking almost circular orbits through the
ecliptic poles due to the Sun constraint. Slews are made with the EPIC cameras
open and the other instruments closed, operating with the observing mode set to
the one of the previous pointed observation and the medium filter in place.
Slew observations from the EPIC-pn camera in FF, eFF and LW modes provide
data, resulting in a maximum of 15 seconds of on-source time. These data can be
used to give a uniform survey of the X-ray sky, at great sensitivity in the
hard band compared with other X-ray all-sky surveys.Comment: 2 pages, 2 figures, to appear in the proceedings of "The X-ray
Universe 2005", San Lorenzo de El Escorial (Spain), 26-30 September 200
Extended sources in the XMM-Newton slew survey
The low background, good spatial resolution and great sensitivity of the
EPIC-pn camera on XMM-Newton give useful limits for the detection of extended
sources even during the short exposures made during slewing maneouvers. In this
paper we attempt to illustrate the potential of the XMM-Newton slew survey as a
tool for analysing flux-limited samples of clusters of galaxies and other
sources of spatially extended X-ray emission.Comment: 2 pages, 4 figures, to appear in the proceedings of "The X-ray
Universe 2005", San Lorenzo de El Escorial (Spain), 26-30 September 200
Validation of the GATE Monte Carlo simulation platform for modelling a CsI(Tl) scintillation camera dedicated to small animal imaging
Monte Carlo simulations are increasingly used in scintigraphic imaging to
model imaging systems and to develop and assess tomographic reconstruction
algorithms and correction methods for improved image quantitation. GATE (GEANT
4 Application for Tomographic Emission) is a new Monte Carlo simulation
platform based on GEANT4 dedicated to nuclear imaging applications. This paper
describes the GATE simulation of a prototype of scintillation camera dedicated
to small animal imaging and consisting of a CsI(Tl) crystal array coupled to a
position sensitive photomultiplier tube. The relevance of GATE to model the
camera prototype was assessed by comparing simulated 99mTc point spread
functions, energy spectra, sensitivities, scatter fractions and image of a
capillary phantom with the corresponding experimental measurements. Results
showed an excellent agreement between simulated and experimental data:
experimental spatial resolutions were predicted with an error less than 100 mu
m. The difference between experimental and simulated system sensitivities for
different source-to-collimator distances was within 2%. Simulated and
experimental scatter fractions in a [98-182 keV] energy window differed by less
than 2% for sources located in water. Simulated and experimental energy spectra
agreed very well between 40 and 180 keV. These results demonstrate the ability
and flexibility of GATE for simulating original detector designs. The main
weakness of GATE concerns the long computation time it requires: this issue is
currently under investigation by the GEANT4 and the GATE collaboration
Energy Analysis of Received Signal Strength Localization in Wireless Sensor Networks
This paper presents the investigation of energy demands during localization of wireless nodes in ad-hoc networks. We focus on the method based on the received signal strength (RSS) to estimate the distances between the nodes. To deal with the uncertainty of this technique, statistical methods are used. It implies more measurement samples to be taken and consequently more energy to be spent. Therefore, we investigate the accuracy of localization and the consumed energy in the relation to the number of measurement samples. The experimental measurements were conducted with IRIS sensor motes and their results related to the proposed energy model. The results show that the expended energy is not related linearly to the localization error. First, improvement of the accuracy rises fast with more measurement samples. Then, adding more samples, the accuracy increase is moderate, which means that the marginal energy cost of the additional improvement is higher
Reconstruction tri-dimensionnelle complete d'images en spect-ct par modelisation Monte-Carlo
présenté par Z. El Bitar, proceedings sous forme de CDEn tomographie d'émission monophotonique (SPECT), les images 3D normalement reconstruites par des algorithmes de reconstruction analytiques ou itératives bidimensionnelles (2D) pourraient aussi bien être reconstruites avec des algorithmes de reconstruction itérative (3D) qui permettent de compenser les effets physiques perturbant le processus de formation de l'image notamment l'atténuation et la diffusion. Nous avons étudié une technique de reconstruction 3D complète (F3DMC) (Lazaro et al. NIM 2004), dans laquelle le projecteur 3D impliqué dans la reconstruction est estimé par des simulations Monte-Carlo effectuées à partir de données tomodensitométriques du patient
Polygonaceae
Hierbas anuales o perennes, arbustos o árboles. Hojas alternas o verticiladas, a veces formando una roseta basal, simples y enteras, estípulas bien desarrolladas y connadas formando una vaina que abraza al tallo (ócrea), con distintas formas y tamaños, persistente o caduca, raro ausentes. Flores en fascículos laxos o compactos, simples o ramificados, pequeñas y sustentadas por una ocréola persistente, con pedicelo articulado; perfectas o a veces imperfectas (plantas monoicas, dioicas o polígamas); actinomorfas, trímeras, a veces pentámeras (raro dímeras). Perianto homoclamídeo o perigonio con 2-6 tépalos connados en la base formando un tubo, calicoide o corolino, blanco o rosado, comúnmente en dos verticilos de 3 piezas no claramente diferenciadas en sépalos y pétalos, algunas veces 5 uniseriadas, comúnmente persistentes; estambres 2-9, raro más, en dos ciclos de 3, opuestos a los tépalos externos; filamentos libres o unidos en la base, a menudo de dos longitudes, los internos dilatados; anteras bitécicas con dehiscencia longitudinal; nectarios formando un disco anular en la base del ovario o varios situados entre los estambres; gineceo súpero, carpelos (2-)3(-4), unidos en un ovario unilocular, uniovulado; estilos 2-4 libres o unidos en la base; placenta basal o formando una breve columna central; óvulo ortótropo (o anátropo), bitegumentado, raro unitegumentado. Fruto aquenio envuelto por el perianto acrescente. Semilla lenticular, trígona o tríquetra; embrión antítropo, periférico, a veces axial, a menudo curvado; endosperma abundante, harinoso u oleoso, duro o blando, algunas veces ruminado. x= 7, 14.
La familia comprende unos 30 géneros y 1000 especies difundidas en todo el mundo, principalmente de regiones templadas del hemisferio norte. Buchinger
- …
