15,569 research outputs found
A computer architecture for intelligent machines
The Theory of Intelligent Machines proposes a hierarchical organization for the functions of an autonomous robot based on the Principle of Increasing Precision With Decreasing Intelligence. An analytic formulation of this theory using information-theoretic measures of uncertainty for each level of the intelligent machine has been developed in recent years. A computer architecture that implements the lower two levels of the intelligent machine is presented. The architecture supports an event-driven programming paradigm that is independent of the underlying computer architecture and operating system. Details of Execution Level controllers for motion and vision systems are addressed, as well as the Petri net transducer software used to implement Coordination Level functions. Extensions to UNIX and VxWorks operating systems which enable the development of a heterogeneous, distributed application are described. A case study illustrates how this computer architecture integrates real-time and higher-level control of manipulator and vision systems
Repetition and difference: Lefebvre, Le Corbusier and modernity's (im)moral landscape: a commentary
This article engages with the relationship between social theory, architectural theory and material culture. The article is a reply to an article in a previous volume of the journal in question (Smith, M. (2001) ‘Repetition and difference: Lefebvre, Le Corbusier and modernity’s (im)moral landscape’, Ethics, Place and Environment, 4(1), 31-34) and, consequently, is also a direct engagement with another academic's scholarship. It represents a critique of their work as well as a recasting of their ideas, arguing that the matter in question went beyond interpretative issues to a direct critique of another author's scholarship on both Le Corbusier and Lefebvre. A reply to my article from the author of the original article was carried in a later issue of the journal (Smith, M. (2002) ‘Ethical Difference(s): a Response to Maycroft on Le Corbusier and Lefebvre’, Ethics, Place and Environment, 5(3), 260-269)
An improved reconstruction procedure for the correction of local magnification effects in three-dimensional atom-probe
A new 3DAP reconstruction procedure is proposed that accounts for the
evaporation field of a secondary phase. It applies the existing cluster
selection software to identify the atoms of the second phase and, subsequently,
an iterative algorithm to homogenise the volume laterally. This Procedure,
easily implementable on existing reconstruction software, has been applied
successfully on simulated and real 3DAP analyses
Mott transition, antiferromagnetism, and unconventional superconductivity in layered organic superconductors
The phase diagram of the layered organic superconductor
-(ET)Cu[N(CN)]Cl has been accurately measured from a
combination of H NMR and AC susceptibility techniques under helium gas
pressure. The domains of stability of antiferromagnetic and superconducting
long-range orders in the pressure {\it vs} temperature plane have been
determined. Both phases overlap through a first-order boundary that separates
two regions of inhomogeneous phase coexistence. The boundary curve is found to
merge with another first order line related to the metal-insulator transition
in the paramagnetic region. This transition is found to evolve into a crossover
regime above a critical point at higher temperature. The whole phase diagram
features a point-like region where metallic, insulating, antiferromagnetic and
non s-wave superconducting phases all meet.Comment: 4 pages, 6 figures, Revte
Early out-of-equilibrium beam-plasma evolution
We solve analytically the out-of-equilibrium initial stage that follows the
injection of a radially finite electron beam into a plasma at rest and test it
against particle-in-cell simulations. For initial large beam edge gradients and
not too large beam radius, compared to the electron skin depth, the electron
beam is shown to evolve into a ring structure. For low enough transverse
temperatures, the filamentation instability eventually proceeds and saturates
when transverse isotropy is reached. The analysis accounts for the variety of
very recent experimental beam transverse observations.Comment: to appear in Phys. Rev. Letter
High-resolution Fourier-transform XUV photoabsorption spectroscopy of 14N15N
The first comprehensive high-resolution photoabsorption spectrum of 14N15N
has been recorded using the Fourier-transform spectrometer attached to the
Desirs beamline at the Soleil synchrotron. Observations are made in the extreme
ultraviolet (XUV) and span 100,000-109,000 cm-1 (100-91.7 nm). The observed
absorption lines have been assigned to 25 bands and reduced to a set of
transition energies, f values, and linewidths. This analysis has verified the
predictions of a theoretical model of N2 that simulates its photoabsorption and
photodissociation cross section by solution of an isotopomer independent
formulation of the coupled-channel Schroedinger equation. The mass dependence
of predissociation linewidths and oscillator strengths is clearly evident and
many local perturbations of transition energies, strengths, and widths within
individual rotational series have been observed.Comment: 14 pages, 8 figures, one data archiv
Computationally efficient methods for modelling laser wakefield acceleration in the blowout regime
Electron self-injection and acceleration until dephasing in the blowout
regime is studied for a set of initial conditions typical of recent experiments
with 100 terawatt-class lasers. Two different approaches to computationally
efficient, fully explicit, three-dimensional particle-in-cell modelling are
examined. First, the Cartesian code VORPAL using a perfect-dispersion
electromagnetic solver precisely describes the laser pulse and bubble dynamics,
taking advantage of coarser resolution in the propagation direction, with a
proportionally larger time step. Using third-order splines for macroparticles
helps suppress the sampling noise while keeping the usage of computational
resources modest. The second way to reduce the simulation load is using
reduced-geometry codes. In our case, the quasi-cylindrical code CALDER-CIRC
uses decomposition of fields and currents into a set of poloidal modes, while
the macroparticles move in the Cartesian 3D space. Cylindrical symmetry of the
interaction allows using just two modes, reducing the computational load to
roughly that of a planar Cartesian simulation while preserving the 3D nature of
the interaction. This significant economy of resources allows using fine
resolution in the direction of propagation and a small time step, making
numerical dispersion vanishingly small, together with a large number of
particles per cell, enabling good particle statistics. Quantitative agreement
of the two simulations indicates that they are free of numerical artefacts.
Both approaches thus retrieve physically correct evolution of the plasma
bubble, recovering the intrinsic connection of electron self-injection to the
nonlinear optical evolution of the driver
Prospects for Measuring Vtb via s-channel Single Top at ATLAS
The production of single top quarks via the electroweak interaction promises to provide new opportunities to both test the Standard Model and search for new physics. In particular, electroweak top production provides the only means to directly measure the CKM matrix element Vtb at ATLAS. The s-channel has the lowest rate, but is the best theoretically understood mechanism of electroweak top production. An evaluation of the potential for background suppression and Vtb measurement in this channel is presented. It is found that significant background suppression can be achieved and Vtb can be measured in the s-channel to a statistical precision of 2.8% after 30 inverse femtobarns of integrated luminosity at the LHC
- …
