2,114 research outputs found
The Penrose photoproduction scenario for NGC 4151: A black hole gamma-ray emission mechanism for active galactic nuclei and Seyfert galaxies
A consistent theoretical interpretation is given for the suggestion that a steepening of the spectrum between X-ray and gamma ray energies may be a general, gamma-ray characteristic of Seyfert galaxies, if the diffuse gamma ray spectrum is considered to be a superposition of unresolved contributions, from one or more classes of extragalactic objects. In the case of NGC 4151, the dominant process is shown to be Penrose Compton scattering in the ergosphere of a Kerr black hole, assumed to exist in the Seyfert's active galactic nucleus
Spectral evolution of active galactic nuclei: A unified description of the X-ray and gamma
A model for spectral evolution is presented whereby active galactic nuclei (AGN) of the type observed individually emerge from an earlier stage at z approx = 4 in which they are the thermal X-ray sources responsible for most of the cosmic X-ray background (CXB). The conjecture is pursued that these precursor objects are initially supermassive Schwarzschild black holes with accretion disks radiating near the Eddington luminosity limit. It is noted that after approx. 10 to the 8th power years these central black holes are spun-up to a canonical Kerr equilibrium state (A/M = 0.998; Thorne 1974) and shown how they then can lead to spectral evolution involving non-thermal emission extending to gamma rays, at the expense of reduced thermal disk radiation. That major portion of the CXB remaining after the contribution of usual AGN are considered, while a superposition of AGN sources at z 1 can account for the gamma ray background. Extensive X-ray measurements carried out with the HEAO 1 and 2 missions as well as gamma ray and optical data are shown to compare favorably with principal features of this model
Optical characteristics of young quasars as sources of the cosmic X-ray background
The sources which dominate the thermal cosmic X-ray background cannot have X-ray spectra similar to the power laws measured for bright active galactic nuclei. The optical consequences of this disparity are pursued by considering a standard model for the photoexcitation and heating of the line emitting gas surrounding a central source (e.g., such as a quasar). The optical line emission to be associated with compact young quasar sources having the same X-ray spectrum as the X-ray background is found to be substantially different from that characteristic of typical quasars. Implications on quasar source counts and the identification of such new objects are discussed
Results of the 2003-2004 Illinois Youth Hunter Survey
Federal Aid Project Number W-112-R-13, Job Number 103.1, Wildlife Restoration Fund, July
1, 2003 - Sept. 30, 2004Report issued on: December 22, 200
Gamma ray lines from the Galactic Center and gamma ray transients
The observations and interpretations of cosmic (nonsolar) gamma ray lines are discussed. The most prominent of these lines is the e(+)e(-) annihilation line which was observed from the Galactic Center and from several gamma ray transients. At the Galactic Center the e(+)e(-) pairs are probably produced by an accreting massive black hole (solar mass of approximately one million) and annihilate within the central light year to produce a line at almost exactly 0.511 MeV. In gamma ray transients the annihilation line is redshifted by factors consistent with neutron star surface redshifts. Other observed transient gamma ray lines appear to be due to cyclotron absorption in the strong magnetic fields of neutron stars, and nuclear deexcitations and neutron capture, which could also occur on or around these objects
Evidence For Intrinsic Magnetic Moments in Black Hole Candidates
We show that the power law part of the quiescent x-ray emissions of neutron stars in low mass x-ray binaries is magnetospheric in origin. It can be very accurately calculated from rates of spin and the times brighter luminosity at the transition to the hard spectral state. We establish that the spectral state transition for neutron stars is a magnetospheric propeller effect. We test the hypothesis that the similar spectral state switches and quiescent power law emissions of the black hole candidates might be magnetospheric effects. In the process we derive proposed magnetic moments and rates of spin for them and accurately predict their quiescent luminosities. We discuss other tests of the hypothesis and consider some attractive aspects of a unified magnetospheric model for low mass x-ray binaries. We also consider some of the changes that would be needed for strong-field gravity theories to accomodate intrinsic magnetic moments in collapsed objects
Atmospheric chemistry of gas-phase polycyclic aromatic hydrocarbons: formation of atmospheric mutagens.
The atmospheric chemistry of the 2- to 4-ring polycyclic aromatic hydrocarbons (PAH), which exist mainly in the gas phase in the atmosphere, is discussed. The dominant loss process for the gas-phase PAH is by reaction with the hydroxyl radical, resulting in calculated lifetimes in the atmosphere of generally less than one day. The hydroxyl (OH) radical-initiated reactions and nitrate (NO3) radical-initiated reactions often lead to the formation of mutagenic nitro-PAH and other nitropolycyclic aromatic compounds, including nitrodibenzopyranones. These atmospheric reactions have a significant effect on ambient mutagenic activity, indicating that health risk assessments of combustion emissions should include atmospheric transformation products
- …
