4,111 research outputs found
Fermi Detection of the Pulsar Wind Nebula HESS J1640-465
We present observations of HESS J1640-465 with the Fermi-LAT. The source is
detected with high confidence as an emitter of high-energy gamma-rays. The
spectrum lacks any evidence for the characteristic cutoff associated with
emission from pulsars, indicating that the emission arises primarily from the
pulsar wind nebula. Broadband modeling implies an evolved nebula with a low
magnetic field resulting in a high gamma-ray to X-ray flux ratio. The Fermi
emission exceeds predictions of the broadband model, and has a steeper
spectrum, possibly resulting from a distinct excess of low energy electrons
similar to what is inferred for both the Vela X and Crab pulsar wind nebulae.Comment: 6 pages, 5 figures, accepted for publication in Ap
UHE nuclei propagation and the interpretation of the ankle in the cosmic-ray spectrum
We consider the stochastic propagation of high-energy protons and nuclei in
the cosmological microwave and infrared backgrounds, using revised photonuclear
cross-sections and following primary and secondary nuclei in the full 2D
nuclear chart. We confirm earlier results showing that the high-energy data can
be fit with a pure proton extragalactic cosmic ray (EGCR) component if the
source spectrum is \propto E^{-2.6}. In this case the ankle in the CR spectrum
may be interpreted as a pair-production dip associated with the propagation. We
show that when heavier nuclei are included in the source with a composition
similar to that of Galactic cosmic-rays (GCRs), the pair-production dip is not
present unless the proton fraction is higher than 85%. In the mixed composition
case, the ankle recovers the past interpretation as the transition from GCRs to
EGCRs and the highest energy data can be explained by a harder source spectrum
\propto E^{-2.2} - E^{-2.3}, reminiscent of relativistic shock acceleration
predictions, and in good agreement with the GCR data at low-energy and holistic
scenarios.Comment: 4 pages, 4 figures, submitted to A&A Letters (minor changes, two
figures replaced, two references added
Vertical Crustal Motion Derived from Satellite Altimetry and Tide Gauges, and Comparisons with DORIS Measurements
A somewhat unorthodox method for determining vertical crustal motion at a tide-gauge location is to difference the sea level time series with an equivalent time series determined from satellite altimetry, To the extent that both instruments measure an identical ocean signal, the difference will be dominated by vertical land motion at the gauge. We revisit this technique by analyzing sea level signals at 28 tide gauges that are colocated with DORIS geodetic stations. Comparisons of altimeter-gauge vertical rates with DORIS rates yield a median difference of 1.8 mm/yr and a weighted root-mean-square difference of2.7 mm/yr. The latter suggests that our uncertainty estimates, which are primarily based on an assumed AR(l) noise process in all time series, underestimates the true errors. Several sources of additional error are discussed, including possible scale errors in the terrestrial reference frame to which altimeter-gauge rates are mostly insensitive, One of our stations, Male, Maldives, which has been the subject of some uninformed arguments about sea-level rise, is found to have almost no vertical motion, and thus is vulnerable to rising sea levels. Published by Elsevier Ltd. on behalf of COSPAR
A critical approach to the concept of a polar, low-altitude LARES satellite
According to very recent developments of the LARES mission, which would be
devoted to the measurement of the general relativistic Lense--Thirring effect
in the gravitational field of the Earth with Satellite Laser Ranging, it seems
that the LARES satellite might be finally launched in a polar, low--altitude
orbit by means of a relatively low--cost rocket. The observable would be the
node only. In this letter we critically analyze this scenario.Comment: LaTex2e, 11 pages, 4 figures, 1 table. Accepted for publication in
Classical and Quantum Gravit
The Interstellar Rubidium Isotope Ratio toward Rho Ophiuchi A
The isotope ratio, 85Rb/87Rb, places constraints on models of the
nucleosynthesis of heavy elements, but there is no precise determination of the
ratio for material beyond the Solar System. We report the first measurement of
the interstellar Rb isotope ratio. Our measurement of the Rb I line at 7800 A
for the diffuse gas toward rho Oph A yields a value of 1.21 +/- 0.30 (1-sigma)
that differs significantly from the meteoritic value of 2.59. The Rb/K
elemental abundance ratio for the cloud also is lower than that seen in
meteorites. Comparison of the 85Rb/K and 87Rb/K ratios with meteoritic values
indicates that the interstellar 85Rb abundance in this direction is lower than
the Solar System abundance. We attribute the lower abundance to a reduced
contribution from the r-process. Interstellar abundances for Kr, Cd, and Sn are
consistent with much less r-process synthesis for the solar neighborhood
compared to the amount inferred for the Solar System.Comment: 12 pages with 2 figures and 1 table; will appear in ApJ Letter
Status of Precise Orbit Determination for Jason-2 Using GPS
The JASON-2 satellite, launched in June 2008, is the latest follow-on to the successful TOPEX/Poseidon (T/P) and JASON-I altimetry missions. JASON-2 is equipped with a TRSR Blackjack GPS dual-frequency receiver, a laser retroreflector array, and a DORIS receiver for precise orbit determination (POD). The most recent time series of orbits computed at NASA GSFC, based on SLR/DORIS data have been completed using both ITRF2005 and ITRF2008. These orbits have been shown to agree radially at 1 cm RMS for dynamic vs SLRlDORIS reduced-dynamic orbits and in comparison with orbits produced by other analysis centers (Lemoine et al., 2010; Zelensky et al., 2010; Cerri et al., 2010). We have recently upgraded the GEODYN software to implement model improvements for GPS processing. We describe the implementation of IGS standards to the Jason2 GEODYN GPS processing, and other dynamical and measurement model improvements. Our GPS-only JASON-2 orbit accuracy is assessed using a number of tests including analysis of independent SLR and altimeter crossover residuals, orbit overlap differences, and direct comparison to orbits generated at GSFC using SLR and DORIS tracking, and to orbits generated externally at other centers. Tests based on SLR and the altimeter crossover residuals provide the best performance indicator for independent validation of the NASAlGSFC GPS-only reduced dynamic orbits. For the ITRF2005 and ITRF2008 implementation of our GPS-only obits we are using the IGS05 and IGS08 standards. Reduced dynamic versus dynamic orbit differences are used to characterize the remaining force model error and TRF instability. We evaluate the GPS vs SLR & DORIS orbits produced using the GEODYN software and assess in particular their consistency radially and the stability of the altimeter satellite reference frame in the Z direction for both ITRF2005 and ITRF2008 as a proxy to assess the consistency of the reference frame for altimeter satellite POD
Spectral up- and downshifting of Akhmediev breathers under wind forcing
We experimentally and numerically investigate the effect of wind forcing on
the spectral dynamics of Akhmediev breathers, a wave-type known to model the
modulation instability. We develop the wind model to the same order in
steepness as the higher order modifcation of the nonlinear Schroedinger
equation, also referred to as the Dysthe equation. This results in an
asymmetric wind term in the higher order, in addition to the leading order wind
forcing term. The derived model is in good agreement with laboratory
experiments within the range of the facility's length. We show that the leading
order forcing term amplifies all frequencies equally and therefore induces only
a broadening of the spectrum while the asymmetric higher order term in the
model enhances higher frequencies more than lower ones. Thus, the latter term
induces a permanent upshift of the spectral mean. On the other hand, in
contrast to the direct effect of wind forcing, wind can indirectly lead to
frequency downshifts, due to dissipative effects such as wave breaking, or
through amplification of the intrinsic spectral asymmetry of the Dysthe
equation. Furthermore, the definitions of the up- and downshift in terms of
peak- and mean frequencies, that are critical to relate our work to previous
results, are highlighted and discussed.Comment: 30 pages, 11 figure
- …
