10,861 research outputs found
Collapsing shells of radiation in anti-de Sitter spacetimes and the hoop and cosmic censorship conjectures
Gravitational collapse of radiation in an anti-de Sitter background is
studied. For the spherical case, the collapse proceeds in much the same way as
in the Minkowski background, i.e., massless naked singularities may form for a
highly inhomogeneous collapse, violating the cosmic censorship, but not the
hoop conjecture. The toroidal, cylindrical and planar collapses can be treated
together. In these cases no naked singularity ever forms, in accordance with
the cosmic censorship. However, since the collapse proceeds to form toroidal,
cylindrical or planar black holes, the hoop conjecture in an anti-de Sitter
spacetime is violated.Comment: 4 pages, Revtex Journal: to appear in Physical Review
Exact General Relativistic Perfect Fluid Disks with Halos
Using the well-known ``displace, cut and reflect'' method used to generate
disks from given solutions of Einstein field equations, we construct static
disks made of perfect fluid based on vacuum Schwarzschild's solution in
isotropic coordinates. The same method is applied to different exactsolutions
to the Einstein'sequations that represent static spheres of perfect fluids. We
construct several models of disks with axially symmetric perfect fluid halos.
All disks have some common features: surface energy density and pressures
decrease monotonically and rapidly with radius. As the ``cut'' parameter
decreases, the disks become more relativistic, with surface energy density and
pressure more concentrated near the center. Also regions of unstable circular
orbits are more likely to appear for high relativistic disks. Parameters can be
chosen so that the sound velocity in the fluid and the tangential velocity of
test particles in circular motion are less then the velocity of light. This
tangential velocity first increases with radius and reaches a maximum.Comment: 22 pages, 25 eps.figs, RevTex. Phys. Rev. D to appea
Gravitational Collapse of Perfect Fluid in Self-Similar Higher Dimensional Space-Times
We investigate the occurrence and nature of naked singularities in the
gravitational collapse of an adiabatic perfect fluid in self-similar higher
dimensional space-times. It is shown that strong curvature naked singularities
could occur if the weak energy condition holds. Its implication for cosmic
censorship conjecture is discussed. Known results of analogous studies in four
dimensions can be recovered.Comment: 11 Pages, Latex, no figures, Accepted in Int. J. Mod. Phys.
Two-Dimensional Black Holes and Planar General Relativity
The Einstein-Hilbert action with a cosmological term is used to derive a new
action in 1+1 spacetime dimensions. It is shown that the two-dimensional theory
is equivalent to planar symmetry in General Relativity. The two-dimensional
theory admits black holes and free dilatons, and has a structure similar to
two-dimensional string theories. Since by construction these solutions also
solve Einstein's equations, such a theory can bring two-dimensional results
into the four-dimensional real world. In particular the two-dimensional black
hole is also a black hole in General Relativity.Comment: 11 pages, plainte
Does a relativistic metric generalization of Newtonian gravity exist in 2+1 dimensions?
It is shown that, contrary to previous claims, a scalar tensor theory of
Brans-Dicke type provides a relativistic generalization of Newtonian gravity in
2+1 dimensions. The theory is metric and test particles follow the space-time
geodesics. The static isotropic solution is studied in vacuum and in regions
filled with an incompressible perfect fluid. It is shown that the solutions can
be consistently matched at the matter vacuum interface, and that the Newtonian
behavior is recovered in the weak field regime.Comment: 6 pages, no figures, Revtex4. Some discussions on the physical nature
of the interior solution and on the omega->infinity limit and some references
added. Version to appear in Phys. Rev.
Quasi-normal modes of toroidal, cylindrical and planar black holes in anti-de Sitter spacetimes: scalar, electromagnetic and gravitational perturbations
We study the quasi-normal modes (QNM) of scalar, electromagnetic and
gravitational perturbations of black holes in general relativity whose horizons
have toroidal, cylindrical or planar topology in an asymptotically anti-de
Sitter (AdS) spacetime. The associated quasinormal frequencies describe the
decay in time of the corresponding test field in the vicinities of the black
hole. In terms of the AdS/CFT conjecture, the inverse of the frequency is a
measure of the dynamical timescale of approach to thermal equilibrium of the
corresponding conformal field theory.Comment: Latex, 16 pages. Minor change
The Three-Dimensional BTZ Black Hole as a Cylindrical System in Four-Dimensional General Relativity
It is shown how to transform the three dimensional BTZ black hole into a four
dimensional cylindrical black hole (i.e., black string) in general relativity.
This process is identical to the transformation of a point particle in three
dimensions into a straight cosmic string in four dimensions.Comment: Latex, 9 page
Gravitational collapse to toroidal, cylindrical and planar black holes
Gravitational collapse of non-spherical symmetric matter leads inevitably to
non-static external spacetimes. It is shown here that gravitational collapse of
matter with toroidal topology in a toroidal anti-de Sitter background proceeds
to form a toroidal black hole. According to the analytical model presented, the
collapsing matter absorbs energy in the form of radiation (be it scalar,
neutrinos, electromagnetic, or gravitational) from the exterior spacetime. Upon
decompactification of one or two coordinates of the torus one gets collapsing
solutions of cylindrical or planar matter onto black strings or black
membranes, respectively. The results have implications on the hoop conjecture.Comment: 6 pages, Revtex, modifications in the title and in the interpretation
of some results, to appear in Physical Review
- …
