497 research outputs found
Cosmological Recombination of Lithium and its Effect on the Microwave Background Anisotropies
The cosmological recombination history of lithium, produced during Big--Bang
nucleosynthesis, is presented using updated chemistry and cosmological
parameters consistent with recent cosmic microwave background (CMB)
measurements. For the popular set of cosmological parameters, about a fifth of
the lithium ions recombine into neutral atoms by a redshift . The
neutral lithium atoms scatter resonantly the CMB at 6708 \AA and distort its
intensity and polarization anisotropies at observed wavelengths around m, as originally suggested by Loeb (2001). The modified anistropies
resulting from the lithium recombination history are calculated for a variety
of cosmological models and found to result primarily in a suppression of the
power spectrum amplitude. Significant modification of the power spectrum occurs
for models which assume a large primordial abundance of lithium. While
detection of the lithium signal might prove difficult, if offers the
possibility of inferring the lithium primordial abundance and is the only probe
proposed to date of the large-scale structure of the Universe for .Comment: 20 pages, 7 figure
Possible flakes of molecular hydrogen in the early Universe
The thermochemistry of H2 and HD in non-collapsed, non-reionized primordial
gas up to the end of the dark age is investigated with recent radiation-matter
and chemical reaction rates taking into account the efficient coolant HD, and
the possibility of a gas-solid phase transition of H2. In the standard big-bang
model we find that these molecules can freeze out and lead to the growth of
flakes of solid molecular hydrogen at redshifts z ~ 6-12 in the unperturbed
medium and under-dense regions. While this freezing caused by the mere
adiabatic cooling of the expanding matter is less likely to occur in collapsed
regions due to their higher than radiation background temperature, on the other
hand the super-adiabatic expansion in voids strongly favors it. Later
reionization (at z ~ 5-6) eventually destroys all these H2 flakes. The possible
occurrence of H2 flakes is important for the degree of coupling between matter
and radiation, as well as for the existence of a gas-grain chemistry at the end
of the dark age.Comment: Accepted for publication to Astronomy and Astrophysic
Recommended from our members
The Highly Deuterated Chemistry of the Early Universe
A comprehensive chemistry of the highly deuterated species D2, D+ 2, D2H+, and D+ 3 in the early universe is presented. Fractional abundances for each are calculated as a function of redshift z in the recombination era. The abundances of the isotopologues are found to display similar behavior. Fractionation enhances the abundances of most of the more highly deuterated species as the redshift decreases due to the closing of some reaction channels as the gas temperature cools. Rate coefficients for the majority of the reactions involving the deuterated species are uncertain resulting in a corresponding uncertainty in their predicted abundances.Astronom
The Effects of Dark Matter Decay and Annihilation on the High-Redshift 21 cm Background
The radiation background produced by the 21 cm spin-flip transition of
neutral hydrogen at high redshifts can be a pristine probe of fundamental
physics and cosmology. At z~30-300, the intergalactic medium (IGM) is visible
in 21 cm absorption against the cosmic microwave background (CMB), with a
strength that depends on the thermal (and ionization) history of the IGM. Here
we examine the constraints this background can place on dark matter decay and
annihilation, which could heat and ionize the IGM through the production of
high-energy particles. Using a simple model for dark matter decay, we show
that, if the decay energy is immediately injected into the IGM, the 21 cm
background can detect energy injection rates >10^{-24} eV cm^{-3} sec^{-1}. If
all the dark matter is subject to decay, this allows us to constrain dark
matter lifetimes <10^{27} sec. Such energy injection rates are much smaller
than those typically probed by the CMB power spectra. The expected brightness
temperature fluctuations at z~50 are a fraction of a mK and can vary from the
standard calculation by up to an order of magnitude, although the difference
can be significantly smaller if some of the decay products free stream to lower
redshifts. For self-annihilating dark matter, the fluctuation amplitude can
differ by a factor <2 from the standard calculation at z~50. Note also that, in
contrast to the CMB, the 21 cm probe is sensitive to both the ionization
fraction and the IGM temperature, in principle allowing better constraints on
the decay process and heating history. We also show that strong IGM heating and
ionization can lead to an enhanced H_2 abundance, which may affect the earliest
generations of stars and galaxies.Comment: submitted to Phys Rev D, 14 pages, 8 figure
Detection of Emission from the CN Radical in the Cloverleaf Quasar at z=2.56
We report the detection of CN(N=3-2) emission towards the Cloverleaf quasar
(z=2.56) based on observations with the IRAM Plateau de Bure Interferometer.
This is the first clear detection of emission from this radical at high
redshift. CN emission is a tracer of dense molecular hydrogen gas (n(H2) > 10^4
cm^{-3}) within star-forming molecular clouds, in particular in regions where
the clouds are affected by UV radiation. The HCN/CN intensity ratio can be used
as a diagnostic for the relative importance of photodissociation regions (PDRs)
in a source, and as a sensitive probe of optical depth, the radiation field,
and photochemical processes. We derive a lensing-corrected CN(N=3-2) line
luminosity of L'(CN(3-2) = (4.5 +/- 0.5) x 10^9 K km/s pc^2. The ratio between
CN luminosity and far-infrared luminosity falls within the scatter of the same
relationship found for low-z (ultra-) luminous infrared galaxies. Combining our
new results with CO(J=3-2) and HCN(J=1-0) measurements from the literature and
assuming thermal excitation for all transitions, we find a CO/CN luminosity
ratio of 9.3 +/- 1.9 and a HCN/CN luminosity ratio of 0.95 +/- 0.15. However,
we find that the CN(N=3-2) line is likely only subthermally excited, implying
that those ratios may only provide upper limits for the intrinsic 1-0 line
luminosity ratios. We conclude that, in combination with other molecular gas
tracers like CO, HCN, and HCO+, CN is an important probe of the physical
conditions and chemical composition of dense molecular environments at high
redshift.Comment: 6 pages, 5 figures, 1 table, to appear in ApJ (accepted May 23, 2007
Molecular fluorine chemistry in the early Universe
Some models of Big Bang nucleosynthesis suggest that very high baryon density
regions were formed in the early Universe, and generated the production of
heavy elements other than lithium such as fluorine F. We present a
comprehensive chemistry of fluorine in the post-recombination epoch.
Calculation of F, F- and HF abundances, as a function of redshift z, are
carried out. The main result is that the chemical conditions in the early
Universe can lead to the formation of HF. The final abundance of the diatomic
molecule HF is predicted to be close to 3.75 10(-17) when the initial abundance
of neutral fluorine F is 10(-15). These results indicate that molecules of
fluorine HF were already present during the dark age. This could have
implications on the evolution of proto-objects and on the anisotropies of
cosmic microwave background radiation. Hydride of fluorine HF may affect
enhancement of the emission line intensity from the proto-objects and could
produce spectral-spatial fluctuations.Comment: Accepted in Astronomy and Astrophysics, 7 pages, 2 figure
Chemical Modelling of Young Stellar Objects, I. Method and Benchmarks
Upcoming facilities such as the Herschel Space Observatory or ALMA will
deliver a wealth of molecular line observations of young stellar objects
(YSOs). Based on line fluxes, chemical abundances can then be estimated by
radiative transfer calculations. To derive physical properties from abundances,
the chemical network needs to be modeled and fitted to the observations. This
modeling process is however computationally exceedingly demanding, particularly
if in addition to density and temperature, far UV (FUV) irradiation, X-rays,
and multi-dimensional geometry have to be considered.
We develop a fast tool, suitable for various applications of chemical
modeling in YSOs. A grid of the chemical composition of the gas having a
density, temperature, FUV irradiation and X-ray flux is pre-calculated as a
function of time. A specific interpolation approach is developed to reduce the
database to a feasible size. Published models of AFGL 2591 are used to verify
the accuracy of the method. A second benchmark test is carried out for FUV
sensitive molecules. The novel method for chemical modeling is more than
250,000 times faster than direct modeling and agrees within a mean factor of
1.35. The tool is distributed for public use.
In the course of devloping the method, the chemical evolution is explored: We
find that X-ray chemistry in envelopes of YSOs can be reproduced by means of an
enhanced cosmic-ray ionization rate. We further find that the abundance of CH+
in low-density gas with high ionization can be enhanced by the recombination of
doubly ionized carbon (C++) and suggest a new value for the initial abundance
of the main sulphur carrier in the hot-core.Comment: Accepted by ApJS. 24 pages, 15 figures. A version with higher
resolution images is available from
http://www.astro.phys.ethz.ch/staff/simonbr/papgridI.pdf . Online data
available at http://www.astro.phys.ethz.ch/chemgrid.html . Second paper of
this series of papers available at arXiv:0906.058
Rovibrationally resolved photodissociation of HeH+
Accurate photodissociation cross sections have been obtained for the A-X
electronic transition of HeH+ using ab initio potential curves and dipole
transition moments. Partial cross sections have been evaluated for all
rotational transitions from the vibrational levels v"=0-11 and over the entire
accessible wavelength range 100-1129 Angstrom. Assuming a Boltzmann
distribution of the rovibrational levels of the X state, photodissociation
cross sections are presented for temperatures between 500 and 12,000 K. A
similar set of calculations was performed for the pure rovibrational
photodissociation in the X-X electronic ground state, but covering photon
wavelengths into the far infrared. Applications of the cross sections to the
destruction of HeH+in the early Universe and in UV-irradiated environments such
as primordial halos and protoplanetary disks are briefly discussed
Ion chemistry in the early universe: revisiting the role of HeH+ with new quantum calculations
The role of HeH+ has been newly assessed with the aid of newly calculated
rates which use entirely ab initio methods, thereby allowing us to compute more
accurately the relevant abundances within the global chemical network of the
early universe. A comparison with the similar role of the ionic molecule LiH+
is also presented. Quantum calculations have been carried out for the gas-phase
reaction of HeH+ with H atoms with our new in-house code, based on the negative
imaginary potential method. Integral cross sections and reactive rate
coefficients obtained under the general conditions of early universe chemistry
are presented and discussed. With the new reaction rate, the abundance of HeH+
in the early universe is more than one order of magnitude larger than in
previous studies. Our more accurate findings further buttress the possibility
to detect cosmological signatures of HeH+.Comment: Astronomy and Astrophysics, in pres
Molecular Tracers of Filamentary CO Emission Regions Surrounding the Central Galaxies of Clusters
Optical emission is detected from filaments around the central galaxies of
clusters of galaxies. These filaments have lengths of tens of kiloparsecs. The
emission is possibly due to heating caused by the dissipation of mechanical
energy and by cosmic ray induced ionisation. CO millimeter and submillimeter
line emissions as well as H infrared emission originating in such
filaments surrounding NGC~1275, the central galaxy of the Perseus cluster, have
been detected. Our aim is to identify those molecular species, other than CO,
that may emit detectable millimeter and submillimeter line features arising in
these filaments, and to determine which of those species will produce emissions
that might serve as diagnostics of the dissipation and cosmic ray induced
ionisation. The time-dependent UCL photon-dominated region modelling code was
used in the construction of steady-state models of molecular filamentary
emission regions at appropriate pressures, for a range of dissipation and
cosmic ray induced ionisation rates and incident radiation fields.HCO and
CH emissions will potentially provide information about the cosmic ray
induced ionisation rates in the filaments. HCN and, in particular, CN are
species with millimeter and submillimeter lines that remain abundant in the
warmest regions containing molecules. Detections of the galaxy cluster
filaments in HCO, CH, and CN emissions and further detections of
them in HCN emissions would provide significant constraints on the dissipation
and cosmic ray induced ionisation rates.Comment: 11 pages, 3 figures, 3 tables, accepted in A&
- …
