2,800 research outputs found

    On Heterotic/Type I Duality in d=8

    Get PDF
    We discuss heterotic corrections to quartic internal U(1) gauge couplings and check duality by calculating one-loop open string diagrams and identifying the D-instanton sum in the dual type I picture. We also compute SO(8)^4 threshold corrections and finally R^2 corrections in type I theory.Comment: 9 pages, Latex, To appear in the proceedings of "Quantum Aspects of Gauge Theories, Supersymmetries and Unification", Corfu, September 199

    Extended N=2 Superconformal Structure of Gravity and W-Gravity Coupled to Matter

    Full text link
    We show that almost all string theories, including the bosonic string, the superstring and WW-string theories, possess a twisted N=2 superconformal symmetry. This enables us to establish a connection between topological gravity and the field theoretical description of matter coupled to gravity. We also show how the \brs operators of the WnW_n-string can be obtained by hamiltonian reduction of SL(nn1)SL(n|n-1). The tachyonic and ground ring states of WW-strings are described in the light of the N=2 superconformal structure, and the ground ring generators for the non-critical W3W_3-string are explicitly constructed. The relationship to G/GG/G models and quantum integrable systems is also briefly described.Comment: 48 page

    Free-field Representations and Geometry of some Gepner models

    Full text link
    The geometry of kKk^{K} Gepner model, where k+2=2Kk+2=2K is investigated by free-field representation known as "bc\bet\gm"-system. Using this representation it is shown directly that internal sector of the model is given by Landau-Ginzburg CK/Z2K\mathbb{C}^{K}/\mathbb{Z}_{2K}-orbifold. Then we consider the deformation of the orbifold by marginal anti-chiral-chiral operator. Analyzing the holomorphic sector of the deformed space of states we show that it has chiral de Rham complex structure of some toric manifold, where toric dates are given by certain fermionic screening currents. It allows to relate the Gepner model deformed by the marginal operator to the σ\sigma-model on CY manifold realized as double cover of PK1\mathbb{P}^{K-1} with ramification along certain submanifold.Comment: LaTex, 14 pages, some acknowledgments adde

    Synchrotron Mössbauer spectroscopic study of ferropericlase at high pressures and temperatures

    Get PDF
    The electronic spin state of Fe^(2+) in ferropericlase, (Mg_(0.75)Fe_(0.25))O, transitions from a high-spin (spin unpaired) to low-spin (spin paired) state within the Earth’s mid-lower mantle region. To better understand the local electronic environment of high-spin Fe^(2+) ions in ferropericlase near the transition, we obtained synchrotron Mössbauer spectra (SMS) of (Mg_(0.75),Fe_(0.25))O in externally heated and laser-heated diamond anvil cells at relevant high pressures and temperatures. Results show that the quadrupole splitting (QS) of the dominant high-spin Fe^(2+) site decreases with increasing temperature at static high pressure. The QS values at constant pressure are fitted to a temperature-dependent Boltzmann distribution model, which permits estimation of the crystal-field splitting energy (Δ_3) between the d_(xy_ and d_(xz) or d_(zy) orbitals of the t_(2g) states in a distorted octahedral Fe^(2+) site. The derived Δ_3 increases from approximately 36 meV at 1 GPa to 95 meV at 40 GPa, revealing that both high pressure and high temperature have significant effects on the 3d electronic shells of Fe^(2+) in ferropericlase. The SMS spectra collected from the laser-heated diamond cells within the time window of 146 ns also indicate that QS significantly decreases at very high temperatures. A larger splitting of the energy levels at high temperatures and pressures should broaden the spin crossover in ferropericlase because the degeneracy of energy levels is partially lifted. Our results provide information on the hyperfine parameters and crystal-field splitting energy of high-spin Fe^(2+) in ferropericlase at high pressures and temperatures, relevant to the electronic structure of iron in oxides in the deep lower mantle

    The matrix factorisations of the D-model

    Full text link
    The fundamental matrix factorisations of the D-model superpotential are found and identified with the boundary states of the corresponding conformal field theory. The analysis is performed for both GSO-projections. We also comment on the relation of this analysis to the theory of surface singularities and their orbifold description.Comment: 23 pages, LaTe

    3D simulations of gas puff effects on edge plasma and ICRF coupling in JET

    Get PDF
    Recent JET (ITER-Like Wall) experiments have shown that the fueling gas puffed from different locations of the vessel can result in different scrape-off layer (SOL) density profiles and therefore different radio frequency (RF) coupling. To reproduce the experimental observations, to understand the associated physics and to optimize the gas puff methods, we have carried out three-dimensional (3D) simulations with the EMC3-EIRENE code in JET-ILW including a realistic description of the vessel geometry and the gas injection modules (GIMs) configuration. Various gas puffing methods have been investigated, in which the location of gas fueling is the only variable parameter. The simulation results are in quantitative agreement with the experimental measurements. They confirm that compared to divertor gas fueling, mid-plane gas puffing increases the SOL density most significantly but locally, while top gas puffing increases it uniformly in toroidal direction but to a lower degree. Moreover, the present analysis corroborates the experimental findings that combined gas puff scenarios-based on distributed main chamber gas puffing-can be effective in increasing the RF coupling for multiple antennas simultaneously. The results indicate that the spreading of the gas, the local ionization and the transport of the ionized gas along the magnetic field lines connecting the local gas cloud in front of the GIMs to the antennas are responsible for the enhanced SOL density and thus the larger RF coupling

    Poincare Polynomials and Level Rank Dualities in the N=2N=2 Coset Construction

    Full text link
    We review the coset construction of conformal field theories; the emphasis is on the construction of the Hilbert spaces for these models, especially if fixed points occur. This is applied to the N=2N=2 superconformal cosets constructed by Kazama and Suzuki. To calculate heterotic string spectra we reformulate the Gepner con- struction in terms of simple currents and introduce the so-called extended Poincar\'e polynomial. We finally comment on the various equivalences arising between models of this class, which can be expressed as level rank dualities. (Invited talk given at the III. International Conference on Mathematical Physics, String Theory and Quantum Gravity, Alushta, Ukraine, June 1993. To appear in Theor. Math. Phys.)Comment: 14 pages in LaTeX, HD-THEP-93-4

    A Note on Computations of D-brane Superpotential

    Full text link
    We develop some computational methods for the integrals over the 3-chains on the compact Calabi-Yau 3-folds that plays a prominent role in the analysis of the topological B-model in the context of the open mirror symmetry. We discuss such 3-chain integrals in two approaches. In the first approach, we provide a systematic algorithm to obtain the inhomogeneous Picard-Fuchs equations. In the second approach, we discuss the analytic continuation of the period integral to compute the 3-chain integral directly. The latter direct integration method is applicable for both on-shell and off-shell formalisms.Comment: 61 pages, 5 figures; v2: typos corrected, minor changes, references adde
    corecore