821 research outputs found
The phosphorylated prodrug FTY720 is a histone deacetylase inhibitor that reactivates ERα expression and enhances hormonal therapy for breast cancer
Estrogen receptor-α (ERα)-negative breast cancer is clinically aggressive and does not respond to conventional hormonal therapies. Strategies that lead to re-expression of ERα could sensitize ERα-negative breast cancers to selective ER modulators. FTY720 (fingolimod, Gilenya), a sphingosine analog, is the Food and Drug Administration (FDA)-approved prodrug for treatment of multiple sclerosis that also has anticancer actions that are not yet well understood. We found that FTY720 is phosphorylated in breast cancer cells by nuclear sphingosine kinase 2 and accumulates there. Nuclear FTY720-P is a potent inhibitor of class I histone deacetylases (HDACs) that enhances histone acetylations and regulates expression of a restricted set of genes independently of its known effects on canonical signaling through sphingosine-1-phosphate receptors. High-fat diet (HFD) and obesity, which is now endemic, increase breast cancer risk and have been associated with worse prognosis. HFD accelerated the onset of tumors with more advanced lesions and increased triple-negative spontaneous breast tumors and HDAC activity in MMTV-PyMT transgenic mice. Oral administration of clinically relevant doses of FTY720 suppressed development, progression and aggressiveness of spontaneous breast tumors in these mice, reduced HDAC activity and strikingly reversed HFD-induced loss of estrogen and progesterone receptors in advanced carcinoma. In ERα-negative human and murine breast cancer cells, FTY720 reactivated expression of silenced ERα and sensitized them to tamoxifen. Moreover, treatment with FTY720 also re-expressed ERα and increased therapeutic sensitivity of ERα-negative syngeneic breast tumors to tamoxifen in vivo more potently than a known HDAC inhibitor. Our work suggests that a multipronged attack with FTY720 is a novel combination approach for effective treatment of both conventional hormonal therapy-resistant breast cancer and triple-negative breast cancer
Insulin-Insulin-like Growth Factors Hybrids as Molecular Probes of Hormone : Receptor Binding Specificity
Insulin, insulin-like growth factors 1 and 2 (IGF-1 and -2, respectively), and their receptors (IR and IGF-1R) are the key elements of a complex hormonal system that is essential for the development and functioning of humans. The C and D domains of IGFs (absent in insulin) likely play important roles in the differential binding of IGF-1 and -2 to IGF-1R and to the isoforms of IR (IR-A and IR-B) and specific activation of these receptors. Here, we attempted to probe the impact of IGF-1 and IGF-2 D domains (DI and DII, respectively) and the IGF-2 C domain (CII) on the receptor specificity of these hormones. For this, we made two types of insulin hybrid analogues: (i) with the C-terminus of the insulin A chain extended by the amino acids from the DI and DII domains and (ii) with the C-terminus of the insulin B chain extended by some amino acids derived from the CII domain. The receptor binding affinities of these analogues and their receptor autophosphorylation potentials were characterized. Our results indicate that the DI domain has a more negative impact than the DII domain does on binding to IR, and that the DI domain Pro-Leu-Lys residues are important factors for a different IR-A versus IR-B binding affinity of IGF-1. We also showed that the additions of amino acids that partially "mimic" the CII domain, to the C-terminus of the insulin B chain, change the binding and autophosphorylation specificity of insulin in favor of the "metabolic" IR-B isoform. This opens new venues for rational enhancement of insulin IR-B specificity by modifications beyond the C-terminus of its B chain
Characterization of gsp-Mediated Growth Hormone Excess in the Context of McCune-Albright Syndrome
McCune-Albright syndrome (MAS) is a disorder characterized by the triad of café-au-lait skin pigmentation, polyostotic fibrous dysplasia of bone, and hyperfunctioning endocrinopathies, including GH excess. The molecular etiology of the disease is postzygotic activating mutations of the GNAS1 gene product, Gsα. The term gsp oncogene has been assigned to these mutations due to their association with certain neoplasms. The aim of this study was to estimate the prevalence of GH excess in MAS, characterize the clinical and endocrine manifestations, and describe the response to treatment. Fifty-eight patients with MAS were screened, and 22 with stigmata of acromegaly and/or elevated GH or IGF-I underwent oral glucose tolerance testing. Twelve patients (21%) had GH excess, based on failure to suppress serum GH on oral glucose tolerance test, and underwent a TRH test, serial GH sampling from 2000-0800 h, and magnetic resonance imaging of the sella. We found that vision and hearing deficits were more common in patients with GH excess (4 of 12, 33%) than those without (2 of 56, 4%). Of interest, patients with a history of precocious puberty and GH excess who had reached skeletal maturity achieved normal adult height despite a history of early epiphyseal fusion. All 9 patients tested had an increase in serum GH after TRH, 11 of 12 (92%) had hyperprolactinemia, and all 8 tested had detectable or elevated nighttime GH levels. Pituitary adenoma was detected in 4 of 12 (33%) patients. All patients with elevated IGF-I levels were treated with cabergoline (7 patients), long-acting octreotide (LAO; 8 patients), or a combination of cabergoline and LAO (4 patients). In six of the seven patients (86%) treated with cabergoline, serum IGF-I decreased, but not to the normal range. In the eight patients treated with LAO alone, IGF-I decreased, and, in four, returned to the normal range. The remaining 4 patients were treated with a combination of cabergoline and LAO. For them, symptoms of GH excess diminished, and IGF-I decreased further, but did not enter the normal range. GH excess is common in MAS and results in a distinct clinical phenotype characterized by inappropriately normal stature, TRH responsiveness, prolactin cosecretion, small or absent pituitary tumors, a consistent but inadequate response to treatment with cabergoline, and an intermediate response to LAO
GPER mediates the angiocrine actions induced by IGF1 through the HIF-1α/VEGF pathway in the breast tumor microenvironment
The G protein estrogen receptor GPER/GPR30 mediates estrogen action in breast cancer cells as well as in breast cancer-associated fibroblasts (CAFs), which are key components of microenvironment driving tumor progression. GPER is a transcriptional target of hypoxia inducible factor 1 alpha (HIF-1α) and activates VEGF expression and angiogenesis in hypoxic breast tumor microenvironment. Furthermore, IGF1/IGF1R signaling, which has angiogenic effects, has been shown to activate GPER in breast cancer cells. We analyzed gene expression data from published studies representing almost 5000 breast cancer patients to investigate whether GPER and IGF1 signaling establish an angiocrine gene signature in breast cancer patients. Next, we used GPER-positive but estrogen receptor (ER)-negative primary CAF cells derived from patient breast tumours and SKBR3 breast cancer cells to investigate the role of GPER in the regulation of VEGF expression and angiogenesis triggered by IGF1. We performed gene expression and promoter studies, western blotting and immunofluorescence analysis, gene silencing strategies and endothelial tube formation assays to evaluate the involvement of the HIF-1α/GPER/VEGF signaling in the biological responses to IGF1. We first determined that GPER is co-expressed with IGF1R and with the vessel marker CD34 in human breast tumors (n = 4972). Next, we determined that IGF1/IGF1R signaling engages the ERK1/2 and AKT transduction pathways to induce the expression of HIF-1α and its targets GPER and VEGF. We found that a functional cooperation between HIF-1α and GPER is essential for the transcriptional activation of VEGF induced by IGF1. Finally, using conditioned medium from CAFs and SKBR3 cells stimulated with IGF1, we established that HIF-1α and GPER are both required for VEGF-induced human vascular endothelial cell tube formation. These findings shed new light on the essential role played by GPER in IGF1/IGF1R signaling that induces breast tumor angiogenesis. Targeting the multifaceted interactions between cancer cells and tumor microenvironment involving both GPCRs and growth factor receptors has potential in future combination anticancer therapies
Reversal of oncogene transformation and suppression of tumor growth by the novel IGF1R kinase inhibitor A-928605
BACKGROUND: The insulin-like growth factor (IGF) axis is an important signaling pathway in the growth and survival of many cell and tissue types. This pathway has also been implicated in many aspects of cancer progression from tumorigenesis to metastasis. The multiple roles of IGF signaling in cancer suggest that inhibition of the pathway might yield clinically effective therapeutics. METHODS: We describe A-928605, a novel pyrazolo [3,4-d]pyrimidine small molecule inhibitor of the receptor tyrosine kinases (IGF1R and IR) responsible for IGF signal transduction. This compound was first tested for its activity and selectivity via conventional in vitro kinome profiling and cellular IGF1R autophosphorylation. Additionally, cellular selectivity and efficacy of A-928605 were analyzed in an IGF1R oncogene-addicted cell line by proliferation, signaling and microarray studies. Finally, in vivo efficacy of A-928605 was assessed in the oncogene-addicted cell line and in a neuroblastoma model as a single agent as well as in combination with clinically approved therapeutics targeting EGFR in models of pancreatic and non-small cell lung cancers. RESULTS: A-928605 is a selective IGF1R inhibitor that is able to abrogate activation of the pathway both in vitro and in vivo. This novel compound dosed as a single agent is able to produce significant growth inhibition of neuroblastoma xenografts in vivo. A-928605 is also able to provide additive effects when used in combination with clinically approved agents directed against EGFR in non-small cell lung and human pancreatic tumor models. CONCLUSION: These results suggest that a selective IGF1R inhibitor such as A-928605 may provide a useful clinical therapeutic for IGF pathway affected tumors and warrants further investigation
Elevated protein tyrosine phosphatase activity and increased membrane viscosity are associated with impaired activation of the insulin receptor kinase in old rats
Dietary epicatechin improves survival and delays skeletal muscle degeneration in aged mice
We recently reported that epicatechin, a bioactive compound that occurs naturally in various common foods, promoted general health and survival of obese diabetic mice. It remains to be determined whether epicatechin extends health span and delays the process of aging. In the present study, epicatechin or its analogue epigallocatechin gallate (EGCG) (0.25% w/v in drinking water) was administered to 20-mo-old male C57BL mice fed a standard chow. The goal was to determine the antiaging effect. The results showed that supplementation with epicatechin for 37 wk strikingly increased the survival rate from 39 to 69%, whereas EGCG had no significant effect. Consistently, epicatechin improved physical activity, delayed degeneration of skeletal muscle (quadriceps), and shifted the profiles of the serum metabolites and skeletal muscle general mRNA expressions in aging mice toward the profiles observed in young mice. In particular, we found that dietary epicatechin significantly reversed age-altered mRNA and protein expressions of extracellular matrix and peroxisome proliferator–activated receptor pathways in skeletal muscle, and reversed the age-induced declines of the nicotinate and nicotinamide pathway both in serum and skeletal muscle. The present study provides evidence that epicatechin supplementation can exert an antiaging effect, including an increase in survival, an attenuation of the aging-related deterioration of skeletal muscles, and a protection against the aging-related decline in nicotinate and nicotinamide metabolism.—Si, H., Wang, X., Zhang, L., Parnell, L. D., Ahmed, B., LeRoith, T., Ansah, T.-A., Zhang, L., Li, J., Ordovás, J. M., Si, H., Liu, D., Lai, C.-Q. Dietary epicatechin improves survival and delays skeletal muscle degeneration in aged mice. FASEB J. 33, 965–977 (2019)
Blood glucose levels in patients with metastatic renal cell carcinoma treated with sunitinib
Sunitinib, a multitargeted tyrosine-kinase inhibitor, extends survival of patients with metastatic renal cell carcinoma (mRCC) and gastrointestinal stromal tumours. Between October 2005 and March 2007, we retrospectively reviewed blood glucose level variations associated with sunitinib therapy in patients treated for mRCC. Nineteen of the patients had type II diabetes. All 19 patients had a decrease in blood glucose level (mean 1.77 mmol l−1) after 4 weeks of treatment. This was followed by re-elevation in the 2-week rest period. After two cycles of sunitinib administration, two patients had stopped blood glucose-lowering drugs whereas five other patients had normalised their blood glucose level. On the basis of pre-clinical data, we hypothesise that several mechanisms could be involved in this process, such as capillary regression of pancreatic islets, IGF-1 modulation through HIF1-α or NF-κB activation. In addition, a decrease of glucose uptake in the context of concomitant gastrointestinal toxicity cannot be excluded. Glycaemic control should be carefully evaluated in diabetic patients treated with sunitinib, and routine monitoring is warranted
- …
