89 research outputs found
Persistent Homology Over Directed Acyclic Graphs
We define persistent homology groups over any set of spaces which have
inclusions defined so that the corresponding directed graph between the spaces
is acyclic, as well as along any subgraph of this directed graph. This method
simultaneously generalizes standard persistent homology, zigzag persistence and
multidimensional persistence to arbitrary directed acyclic graphs, and it also
allows the study of more general families of topological spaces or point-cloud
data. We give an algorithm to compute the persistent homology groups
simultaneously for all subgraphs which contain a single source and a single
sink in arithmetic operations, where is the number of vertices in
the graph. We then demonstrate as an application of these tools a method to
overlay two distinct filtrations of the same underlying space, which allows us
to detect the most significant barcodes using considerably fewer points than
standard persistence.Comment: Revised versio
Vaccines against toxoplasma gondii : challenges and opportunities
Development of vaccines against Toxoplasma gondii infection in humans is of high priority, given the high burden of disease in some areas of the world like South America, and the lack of effective drugs with few adverse effects. Rodent models have been used in research on vaccines against T. gondii over the past decades. However, regardless of the vaccine construct, the vaccines have not been able to induce protective immunity when the organism is challenged with T. gondii, either directly or via a vector. Only a few live, attenuated T. gondii strains used for immunization have been able to confer protective immunity, which is measured by a lack of tissue cysts after challenge. Furthermore, challenge with low virulence strains, especially strains with genotype II, will probably be insufficient to provide protection against the more virulent T. gondii strains, such as those with genotypes I or II, or those genotypes from South America not belonging to genotype I, II or III. Future studies should use animal models besides rodents, and challenges should be performed with at least one genotype II T. gondii and one of the more virulent genotypes. Endpoints like maternal-foetal transmission and prevention of eye disease are important in addition to the traditional endpoint of survival or reduction in numbers of brain cysts after challenge
Signatures of a dissipative phase transition in photon correlation measurements
This work was supported by the Swiss National Science Foundation (SNSF) through the National Centre of Competence in Research - Quantum Science and Technology (NCCR QSIT). A.S., C.S., and S.H. acknowledge support by the State of Bavaria and the DFG within the Project Schn1376/3-1.Understanding and characterizing phase transitions in driven-dissipative systems constitutes a new frontier for many-body physics[1-8]. A generic feature of dissipative phase transitions is a vanishing gap in the Liouvillian spectrum [9], which leads to long-lived deviations from the steady state as the system is driven towards the transition. Here, we show that photon correlation measurements can be used to characterize the corresponding critical slowing down of non-equilibrium dynamics. We focus on the extensively studied phenomenon of optical bistability in GaAs cavity polaritons [10,11], which can be described as a first-order dissipative phase transition [12-14]. Increasing the excitation strength towards the bistable range results in an increasing photon-bunching signal along with a decay time that is prolonged by more than nine orders of magnitude as compared with that of single polaritons. In the limit of strong polariton interactions leading to pronounced quantum fluctuations, the mean-field bistability threshold is washed out. Nevertheless, the functional form with which the Liouvillian gap closes as the thermodynamic limit is approached provides a signature of the emerging dissipative phase transition. Our results establish photon correlation measurements as an invaluable tool for studying dynamical properties of dissipative phase transitions without requiring phase-sensitive interferometric measurements.PostprintPeer reviewe
A re-evaluation of the magnitude and impacts of anthropogenic atmospheric nitrogen inputs on the ocean
We report a new synthesis of best estimates of the inputs of fixed nitrogen to the world ocean via atmospheric deposition, and compare this to fluvial inputs and di-nitrogen fixation. We evaluate the scale of human perturbation of these fluxes. Fluvial inputs dominate inputs to the continental shelf, and we estimate about 75% of this fluvial nitrogen escapes from the shelf to the open ocean. Biological di-nitrogen fixation is the main external source of nitrogen to the open ocean, i.e. beyond the continental shelf. Atmospheric deposition is the primary mechanism by which land based nitrogen inputs, and hence human perturbations of the nitrogen cycle, reach the open ocean. We estimate that anthropogenic inputs are currently leading to an increase in overall ocean carbon sequestration of ~0.4% (equivalent to an uptake of 0.15 Pg C yr-1 and less than the Duce et al., 2008 estimate). The resulting reduction in climate change forcing from this ocean CO2 uptake is offset to a small extent by an increase in ocean N2O emissions. We identify four important feedbacks in the ocean atmosphere nitrogen system that need to be better quantified to improve our understanding of the perturbation of ocean biogeochemistry by atmospheric nitrogen inputs. These feedbacks are recycling of (1) ammonia and (2) organic nitrogen from the ocean to the atmosphere and back, (3) the suppression of nitrogen fixation by increased nitrogen concentrations in surface waters from atmospheric deposition, and (4) increased loss of nitrogen from the ocean by denitrification due to increased productivity stimulated by atmospheric inputs
The processing and impact of dissolved riverine nitrogen in the Arctic Ocean
© The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Estuaries and Coasts 35 (2012): 401-415, doi:10.1007/s12237-011-9417-3.Although the Arctic Ocean is the most riverine-influenced of all of the world’s oceans, the importance of terrigenous nutrients in this environment is poorly understood. This study couples estimates of circumpolar riverine nutrient fluxes from the PARTNERS (Pan-Arctic River Transport of Nutrients, Organic Matter, and Suspended Sediments) Project with a regionally configured version of the MIT general circulation model to develop estimates of the distribution and availability of dissolved riverine N in the Arctic Ocean, assess its importance for primary production, and compare these estimates to potential bacterial production fueled by riverine C. Because riverine dissolved organic nitrogen is remineralized slowly, riverine N is available for uptake well into the open ocean. Despite this, we estimate that even when recycling is considered, riverine N may support 0.5–1.5 Tmol C year−1 of primary production, a small proportion of total Arctic Ocean photosynthesis. Rapid uptake of dissolved inorganic nitrogen coupled with relatively high rates of dissolved organic nitrogen regeneration in N-limited nearshore regions, however, leads to potential localized rates of riverine-supported photosynthesis that represent a substantial proportion of nearshore production.Funding for this work was provided through NSFOPP-
0229302 and NSF-OPP-0732985.Support to SET was additionally
provided by an NSERC Postdoctoral Fellowship
Environmental effects of ozone depletion, UV radiation and interactions with climate change : UNEP Environmental Effects Assessment Panel, update 2017
Peer reviewe
H2S events in the Peruvian oxygen minimum zone facilitate enhanced dissolved Fe concentrations
Dissolved iron (DFe) concentrations in oxygen minimum zones (OMZs) of Eastern Boundary Upwelling Systems are enhanced as a result of high supply rates from anoxic sediments. However, pronounced variations in DFe concentrations in anoxic coastal waters of the Peruvian OMZ indicate that there are factors in addition to dissolved oxygen concentrations (O2) that control Fe cycling. Our study demonstrates that sediment-derived reduced Fe (Fe(II)) forms the main DFe fraction in the anoxic/euxinic water column off Peru, which is responsible for DFe accumulations of up to 200 nmol L-1. Lowest DFe values were observed in anoxic shelf waters in the presence of nitrate and nitrite. This reflects oxidation of sediment-sourced Fe(II) associated with nitrate/nitrite reduction and subsequent removal as particulate Fe(III) oxyhydroxides. Unexpectedly, the highest DFe levels were observed in waters with elevated concentrations of hydrogen sulfide (up to 4 µmol L-1) and correspondingly depleted nitrate/nitrite concentrations (<0.18 µmol L-1). Under these conditions, Fe removal was reduced through stabilization of Fe(II) as aqueous iron sulfide (FeSaqu) which comprises complexes (e.g., FeSH+) and clusters (e.g., Fe2S2|4H2O). Sulfidic events on the Peruvian shelf consequently enhance Fe availability, and may increase in frequency in future due to projected expansion and intensification of OMZs
Global distribution and surface activity of macromolecules in offline simulations of marine organic chemistry
Shelf-basin exchange times of Arctic surface waters estimated from 228Th/228Ra disequilibrium
The Trans Polar Drift is strongly enriched in 228Ra accumulated on the wide Arctic shelves with subsequent rapid off-shore transport. We present new data of Polarstern expeditions to the central Arctic and to the Kara and Laptev Seas. Because 226Ra activities in Pacific waters are 30% higher than in Atlantic waters, we correct 226Ra for the Pacific admixture when normalizing 228Ra with 226Ra. The use of 228Ra decay as age marker critically depends on the constancy in space and time of the source activity, a condition that has not yet adequately been tested. While 228Ra decays during transit over the central Basin, ingrowth of 228Th could provide an alternative age marker. The high 228Th/228Ra activity ratio (AR=0.8 – 1.0) in the central basins is incompatible with a mixing model based on horizontal eddy diffusion. An advective model predicts that 228Th grows to an equilibrium AR, the value of which depends on the scavenging regime. The low AR over the Lomonosov Ridge (AR=0.5) can be due to either rapid transport (minimum age without scavenging 1.1 year) or enhanced scavenging. Suspended particulate matter (SPM) load (derived from beam transmission and particulate 234Th) and total 234Th depletion data show that scavenging, although extremely low in the central Arctic, is enhanced over the Lomonosov Ridge, making an age of 3 yr more likely. The combined data of 228Ra decay and 228Th ingrowth confirm the existence of a recirculating gyre in the surface water of the eastern Eurasian Basin with a river water residence time of at least 3 years
- …
