2,927 research outputs found
Modeling and Validation of Temperature and Concentration for Rapid Freeze Prototyping
Rapid Freeze Prototyping is a solid freeform fabrication process that uses water as the main build
material in a cold environment to create three-dimensional parts. A eutectic sugar-water solution
(C6H12O6 – H2O) has been used as a sacrificial material in order to create complex 3D parts with
features such as overhangs. A study of the interaction of the build and support materials is
presented in this paper. The temperature of both materials during deposition and subsequent
cooling is modeled using a semi-empirical model and a theoretical model. A concentration
model is used to predict the concentration in the fabricated parts around the interface of the two
materials with predicted temperatures as input. Experiments are conducted to validate both the
temperature and concentration models.Mechanical Engineerin
Recommended from our members
Study on Incorporating Support Material in Rapid Freeze Prototyping
Rapid Freeze Prototyping (RFP) is a rapid prototyping method that uses water freezing
into ice to make three-dimensional parts. Each layer of a geometry is deposited and allowed to
freeze before the next layer is added. Using a support material in RFP is a relatively new
addition to the process. Validating the successful use of a support material in conjunction with
the main build material of water is presented in this paper. The support material selected for use
is a eutectic sugar solution. The selection criteria, properties, and characteristics of the support
material are discussed. Of particular interest is the diffusion between the support and main build
material, which must be minimized to an acceptable level for producing good quality,
reproducible, complex parts.Mechanical Engineerin
CORBYS cognitive control architecture for robotic follower
In this paper the novel generic cognitive robot control architecture CORBYS is presented. The objective of the CORBYS architecture is the integration of high-level cognitive modules to support robot functioning in dynamic environments including interacting with humans. This paper presents the preliminary integration of the CORBYS architecture to support a robotic follower. Experimental results on high-level empowerment-based trajectory planning have demonstrated the effectiveness of ROS-based communication between distributed modules developed in a multi-site research environment as typical for distributed collaborative projects such as CORBYS
Adsorption of HO_x on Aerosol Surfaces: Implications for the Atmosphere of Mars
The potential impact of heterogeneous chemistry on the abundance and distribution of HO_x in the atmosphere of Mars has been assessed by combining observational data of dust and ice aerosol distributions with an updated photochemical model. Critical parameters include the altitude distributions of aerosols, and the surface loss coefficients (γ) of HO_2 on dust and ice in the lower atmosphere, and H on ice above 40 km. We find that adsorption of HO_2 on dust (γHO_2 ≥ 0.01), or ice near 30 km (γHO_2 ≥ 0.1), can deplete OH abundances in the lower atmosphere by 10% or more. Such depletions approach those obtained by lowering the water vapor abundance by an order of magnitude below the global average observed by Viking (≈ 25%). Since the oxidation of CO is catalyzed by HO_x in the lower atmosphere via the reaction CO + OH → CO_2 + H, loss of OH due to adsorption of HO_2 on dust or ice at low altitudes could have a significant effect on the ratio CO : CO_2. The adsorption of H on ice at 50 km (γ_H ≥ 0.01) can result in even larger OH depletions. However, this effect is localized to altitudes > 40 km, where CO oxidation is relatively unimportant. Laboratory data suggest that γHO_2 ≈ 0.01 is a reasonable estimate for adsorption on dust. Larger values are plausible, but are not strongly supported by experimental evidence. The reactivity of HO_2 on ice is unknown, while γH on ice appears to be < 0.001. There is a need for measurements of HO_x adsorption on surfaces representative of Martian aerosols at temperatures < 220 K
Influence of Magnetism on Phonons in CaFe2As2 Via Inelastic X-ray Scattering
In the iron pnictides, the strong sensitivity of the iron magnetic moment to
the arsenic position suggests a significant relationship between phonons and
magnetism. We measured the phonon dispersion of several branches in the high
temperature tetragonal phase of CaFe2As2 using inelastic x-ray scattering on
single-crystal samples. These measurements were compared to ab initio
calculations of the phonons. Spin polarized calculations imposing the
antiferromagnetic order present in the low temperature orthorhombic phase
dramatically improve agreement between theory and experiment. This is discussed
in terms of the strong antiferromagnetic correlations that are known to persist
in the tetragonal phase.Comment: 4 pages, 3 figures; added additional information and references about
spin fluctuation
Low field hysteresis in disordered ferromagnets
We analyze low field hysteresis close to the demagnetized state in disordered
ferromagnets using the zero temperature random-field Ising model. We solve the
demagnetization process exactly in one dimension and derive the Rayleigh law of
hysteresis. The initial susceptibility a and the hysteretic coefficient b
display a peak as a function of the disorder width. This behavior is confirmed
by numerical simulations d=2,3 showing that in limit of weak disorder
demagnetization is not possible and the Rayleigh law is not defined. These
results are in agreement with experimental observations on nanocrystalline
magnetic materials.Comment: Extended version, 18 pages, 5 figures, to appear in Phys. Rev.
Groundwater contamination with nitrogenous compounds in Kumamoto Prefecture and Hanoi City : Present conditions and adopted countermeasures
Joint Research on Environmental Science and Technology for the Eart
A constrained Potts antiferromagnet model with an interface representation
We define a four-state Potts model ensemble on the square lattice, with the
constraints that neighboring spins must have different values, and that no
plaquette may contain all four states. The spin configurations may be mapped
into those of a 2-dimensional interface in a 2+5 dimensional space. If this
interface is in a Gaussian rough phase (as is the case for most other models
with such a mapping), then the spin correlations are critical and their
exponents can be related to the stiffness governing the interface fluctuations.
Results of our Monte Carlo simulations show height fluctuations with an
anomalous dependence on wavevector, intermediate between the behaviors expected
in a rough phase and in a smooth phase; we argue that the smooth phase (which
would imply long-range spin order) is the best interpretation.Comment: 61 pages, LaTeX. Submitted to J. Phys.
Spin states of the first four holes in a silicon nanowire quantum dot
We report measurements on a silicon nanowire quantum dot with a clarity that
allows for a complete understanding of the spin states of the first four holes.
First, we show control of the hole number down to one. Detailed measurements at
perpendicular magnetic fields reveal the Zeeman splitting of a single hole in
silicon. We are able to determine the ground-state spin configuration for one
to four holes occupying the quantum dot and find a spin filling with
alternating spin-down and spin-up holes, which is confirmed by
magnetospectroscopy up to 9T. Additionally, a so far inexplicable feature in
single-charge quantum dots in many materials systems is analyzed in detail. We
observe excitations of the zero-hole ground-state energy of the quantum dot,
which cannot correspond to electronic or Zeeman states. We show that the most
likely explanation is acoustic phonon emission to a cavity between the two
contacts to the nanowire.Comment: 24 pages, 8 figures, both including supporting informatio
- …
