3,053 research outputs found
Critical Collapse of an Ultrarelativistic Fluid in the Limit
In this paper we investigate the critical collapse of an ultrarelativistic
perfect fluid with the equation of state in the limit of
. We calculate the limiting continuously self similar (CSS)
solution and the limiting scaling exponent by exploiting self-similarity of the
solution. We also solve the complete set of equations governing the
gravitational collapse numerically for and
compare them with the CSS solutions. We also investigate the supercritical
regime and discuss the hypothesis of naked singularity formation in a generic
gravitational collapse. The numerical calculations make use of advanced methods
such as high resolution shock capturing evolution scheme for the matter
evolution, adaptive mesh refinement, and quadruple precision arithmetic. The
treatment of vacuum is also non standard. We were able to tune the critical
parameter up to 30 significant digits and to calculate the scaling exponents
accurately. The numerical results agree very well with those calculated using
the CSS ansatz. The analysis of the collapse in the supercritical regime
supports the hypothesis of the existence of naked singularities formed during a
generic gravitational collapse.Comment: 23 pages, 16 figures, revised version, added new results of
investigation of a supercritical collapse and the existence of naked
singularities in generic gravitational collaps
Raman signatures of classical and quantum phases in coupled dots: A theoretical prediction
We study electron molecules in realistic vertically coupled quantum dots in a
strong magnetic field. Computing the energy spectrum, pair correlation
functions, and dynamical form factor as a function of inter-dot coupling via
diagonalization of the many-body Hamiltonian, we identify structural
transitions between different phases, some of which do not have a classical
counterpart. The calculated Raman cross section shows how such phases can be
experimentally singled out.Comment: 9 pages, 2 postscript figures, 1 colour postscript figure, Latex 2e,
Europhysics Letters style and epsfig macros. Submitted to Europhysics Letter
Finite difference lattice Boltzmann model with flux limiters for liquid-vapor systems
In this paper we apply a finite difference lattice Boltzmann model to study
the phase separation in a two-dimensional liquid-vapor system. Spurious
numerical effects in macroscopic equations are discussed and an appropriate
numerical scheme involving flux limiter techniques is proposed to minimize them
and guarantee a better numerical stability at very low viscosity. The phase
separation kinetics is investigated and we find evidence of two different
growth regimes depending on the value of the fluid viscosity as well as on the
liquid-vapor ratio.Comment: 10 pages, 10 figures, to be published in Phys. Rev.
Numerical Simulation of the Hydrodynamical Combustion to Strange Quark Matter
We present results from a numerical solution to the burning of neutron matter
inside a cold neutron star into stable (u,d,s) quark matter. Our method solves
hydrodynamical flow equations in 1D with neutrino emission from weak
equilibrating reactions, and strange quark diffusion across the burning front.
We also include entropy change due to heat released in forming the stable quark
phase. Our numerical results suggest burning front laminar speeds of 0.002-0.04
times the speed of light, much faster than previous estimates derived using
only a reactive-diffusive description. Analytic solutions to hydrodynamical
jump conditions with a temperature dependent equation of state agree very well
with our numerical findings for fluid velocities. The most important effect of
neutrino cooling is that the conversion front stalls at lower density (below
approximately 2 times saturation density). In a 2-dimensional setting, such
rapid speeds and neutrino cooling may allow for a flame wrinkle instability to
develop, possibly leading to detonation.Comment: 5 pages, 3 figures (animations online at
http://www.capca.ucalgary.ca/~bniebergal/webPHP/research.php
Computational and in vitro studies of blast-induced blood-brain barrier disruption
There is growing concern that blast-exposed individuals are at risk of
developing neurological disorders later in life. Therefore, it is important to
understand the dynamic properties of blast forces on brain cells, including the
endothelial cells that maintain the blood-brain barrier (BBB), which regulates
the passage of nutrients into the brain and protects it from toxins in the
blood. To better understand the effect of shock waves on the BBB we have
investigated an {\em in vitro} model in which BBB endothelial cells are grown
in transwell vessels and exposed in a shock tube, confirming that BBB integrity
is directly related to shock wave intensity. It is difficult to directly
measure the forces acting on these cells in the transwell container during the
experiments, and so a computational tool has been developed and presented in
this paper.
Two-dimensional axisymmetric Euler equations with the Tammann equation of
state were used to model the transwell materials, and a high-resolution finite
volume method based on Riemann solvers and the Clawpack software was used to
solve these equations in a mixed Eulerian/Lagrangian frame. Results indicated
that the geometry of the transwell plays a significant role in the observed
pressure time series in these experiments. We also found that pressures can
fall below vapor pressure due to the interaction of reflecting and diffracting
shock waves, suggesting that cavitation bubbles could be a damage mechanism.
Computations that include a simulated hydrophone inserted in the transwell
suggest that the instrument itself could significantly alter blast wave
properties. These findings illustrate the need for further computational
modeling studies aimed at understanding possible blast-induced BBB damage
Evolution of clouds in radio galaxy cocoons
This letter presents a numerical study of the evolution of an emission line
cloud of initial density 10 cm, temperature K, and size 200 pc,
being overtaken by a strong shock wave. Whereas previous simple models proposed
that such a cloud would either be completely destroyed, or simply shrink in
size, our results show a different and more complex behaviour: due to rapid
cooling, the cloud breaks up into many small and dense fragments, which can
survive for a long time. We show that such rapid cooling behaviour is in fact
expected for a wide range of cloud and shock properties. This process applies
to the evolution of emission line clouds being overtaken by the cocoon of a
radio jet. The resulting small clouds would be Jeans unstable, and form stars.
Our results thus give theoretical credibility to the process of jet induced
star formation, one of the explanations for the alignment of the optical/UV and
radio axis observed in high redshift radio galaxies.Comment: 4 pages, 2 figures, movies available at
http://www.strw.leidenuniv.nl/TheoryGroup/IG-Cloud.htm
An Analytical Framework to Describe the Interactions Between Individuals and a Continuum
We consider a discrete set of individual agents interacting with a continuum.
Examples might be a predator facing a huge group of preys, or a few shepherd
dogs driving a herd of sheeps. Analytically, these situations can be described
through a system of ordinary differential equations coupled with a scalar
conservation law in several space dimensions. This paper provides a complete
well posedness theory for the resulting Cauchy problem. A few applications are
considered in detail and numerical integrations are provided
Consistent thermodynamic derivative estimates for tabular equations of state
Numerical simulations of compressible fluid flows require an equation of
state (EOS) to relate the thermodynamic variables of density, internal energy,
temperature, and pressure. A valid EOS must satisfy the thermodynamic
conditions of consistency (derivation from a free energy) and stability
(positive sound speed squared). When phase transitions are significant, the EOS
is complicated and can only be specified in a table. For tabular EOS's such as
SESAME from Los Alamos National Laboratory, the consistency and stability
conditions take the form of a differential equation relating the derivatives of
pressure and energy as functions of temperature and density, along with
positivity constraints. Typical software interfaces to such tables based on
polynomial or rational interpolants compute derivatives of pressure and energy
and may enforce the stability conditions, but do not enforce the consistency
condition and its derivatives. We describe a new type of table interface based
on a constrained local least squares regression technique. It is applied to
several SESAME EOS's showing how the consistency condition can be satisfied to
round-off while computing first and second derivatives with demonstrated
second-order convergence. An improvement of 14 orders of magnitude over
conventional derivatives is demonstrated, although the new method is apparently
two orders of magnitude slower, due to the fact that every evaluation requires
solving an 11-dimensional nonlinear system.Comment: 29 pages, 9 figures, 16 references, submitted to Phys Rev
Derivation, Properties, and Simulation of a Gas-Kinetic-Based, Non-Local Traffic Model
We derive macroscopic traffic equations from specific gas-kinetic equations,
dropping some of the assumptions and approximations made in previous papers.
The resulting partial differential equations for the vehicle density and
average velocity contain a non-local interaction term which is very favorable
for a fast and robust numerical integration, so that several thousand freeway
kilometers can be simulated in real-time. The model parameters can be easily
calibrated by means of empirical data. They are directly related to the
quantities characterizing individual driver-vehicle behavior, and their optimal
values have the expected order of magnitude. Therefore, they allow to
investigate the influences of varying street and weather conditions or freeway
control measures. Simulation results for realistic model parameters are in good
agreement with the diverse non-linear dynamical phenomena observed in freeway
traffic.Comment: For related work see
http://www.theo2.physik.uni-stuttgart.de/helbing.html and
http://www.theo2.physik.uni-stuttgart.de/treiber.htm
New Formalism for Numerical Relativity
We present a new formulation of the Einstein equations that casts them in an
explicitly first order, flux-conservative, hyperbolic form. We show that this
now can be done for a wide class of time slicing conditions, including maximal
slicing, making it potentially very useful for numerical relativity. This
development permits the application to the Einstein equations of advanced
numerical methods developed to solve the fluid dynamic equations, {\em without}
overly restricting the time slicing, for the first time. The full set of
characteristic fields and speeds is explicitly given.Comment: uucompresed PS file. 4 pages including 1 figure. Revised version adds
a figure showing a comparison between the standard ADM approach and the new
formulation. Also available at http://jean-luc.ncsa.uiuc.edu/Papers/ Appeared
in Physical Review Letters 75, 600 (1995
- …
