3,053 research outputs found

    Critical Collapse of an Ultrarelativistic Fluid in the Γ1\Gamma\to 1 Limit

    Full text link
    In this paper we investigate the critical collapse of an ultrarelativistic perfect fluid with the equation of state P=(Γ1)ρP=(\Gamma-1)\rho in the limit of Γ1\Gamma\to 1. We calculate the limiting continuously self similar (CSS) solution and the limiting scaling exponent by exploiting self-similarity of the solution. We also solve the complete set of equations governing the gravitational collapse numerically for (Γ1)=102,...,106(\Gamma-1) = 10^{-2},...,10^{-6} and compare them with the CSS solutions. We also investigate the supercritical regime and discuss the hypothesis of naked singularity formation in a generic gravitational collapse. The numerical calculations make use of advanced methods such as high resolution shock capturing evolution scheme for the matter evolution, adaptive mesh refinement, and quadruple precision arithmetic. The treatment of vacuum is also non standard. We were able to tune the critical parameter up to 30 significant digits and to calculate the scaling exponents accurately. The numerical results agree very well with those calculated using the CSS ansatz. The analysis of the collapse in the supercritical regime supports the hypothesis of the existence of naked singularities formed during a generic gravitational collapse.Comment: 23 pages, 16 figures, revised version, added new results of investigation of a supercritical collapse and the existence of naked singularities in generic gravitational collaps

    Raman signatures of classical and quantum phases in coupled dots: A theoretical prediction

    Get PDF
    We study electron molecules in realistic vertically coupled quantum dots in a strong magnetic field. Computing the energy spectrum, pair correlation functions, and dynamical form factor as a function of inter-dot coupling via diagonalization of the many-body Hamiltonian, we identify structural transitions between different phases, some of which do not have a classical counterpart. The calculated Raman cross section shows how such phases can be experimentally singled out.Comment: 9 pages, 2 postscript figures, 1 colour postscript figure, Latex 2e, Europhysics Letters style and epsfig macros. Submitted to Europhysics Letter

    Finite difference lattice Boltzmann model with flux limiters for liquid-vapor systems

    Full text link
    In this paper we apply a finite difference lattice Boltzmann model to study the phase separation in a two-dimensional liquid-vapor system. Spurious numerical effects in macroscopic equations are discussed and an appropriate numerical scheme involving flux limiter techniques is proposed to minimize them and guarantee a better numerical stability at very low viscosity. The phase separation kinetics is investigated and we find evidence of two different growth regimes depending on the value of the fluid viscosity as well as on the liquid-vapor ratio.Comment: 10 pages, 10 figures, to be published in Phys. Rev.

    Numerical Simulation of the Hydrodynamical Combustion to Strange Quark Matter

    Full text link
    We present results from a numerical solution to the burning of neutron matter inside a cold neutron star into stable (u,d,s) quark matter. Our method solves hydrodynamical flow equations in 1D with neutrino emission from weak equilibrating reactions, and strange quark diffusion across the burning front. We also include entropy change due to heat released in forming the stable quark phase. Our numerical results suggest burning front laminar speeds of 0.002-0.04 times the speed of light, much faster than previous estimates derived using only a reactive-diffusive description. Analytic solutions to hydrodynamical jump conditions with a temperature dependent equation of state agree very well with our numerical findings for fluid velocities. The most important effect of neutrino cooling is that the conversion front stalls at lower density (below approximately 2 times saturation density). In a 2-dimensional setting, such rapid speeds and neutrino cooling may allow for a flame wrinkle instability to develop, possibly leading to detonation.Comment: 5 pages, 3 figures (animations online at http://www.capca.ucalgary.ca/~bniebergal/webPHP/research.php

    Computational and in vitro studies of blast-induced blood-brain barrier disruption

    Full text link
    There is growing concern that blast-exposed individuals are at risk of developing neurological disorders later in life. Therefore, it is important to understand the dynamic properties of blast forces on brain cells, including the endothelial cells that maintain the blood-brain barrier (BBB), which regulates the passage of nutrients into the brain and protects it from toxins in the blood. To better understand the effect of shock waves on the BBB we have investigated an {\em in vitro} model in which BBB endothelial cells are grown in transwell vessels and exposed in a shock tube, confirming that BBB integrity is directly related to shock wave intensity. It is difficult to directly measure the forces acting on these cells in the transwell container during the experiments, and so a computational tool has been developed and presented in this paper. Two-dimensional axisymmetric Euler equations with the Tammann equation of state were used to model the transwell materials, and a high-resolution finite volume method based on Riemann solvers and the Clawpack software was used to solve these equations in a mixed Eulerian/Lagrangian frame. Results indicated that the geometry of the transwell plays a significant role in the observed pressure time series in these experiments. We also found that pressures can fall below vapor pressure due to the interaction of reflecting and diffracting shock waves, suggesting that cavitation bubbles could be a damage mechanism. Computations that include a simulated hydrophone inserted in the transwell suggest that the instrument itself could significantly alter blast wave properties. These findings illustrate the need for further computational modeling studies aimed at understanding possible blast-induced BBB damage

    Evolution of clouds in radio galaxy cocoons

    Get PDF
    This letter presents a numerical study of the evolution of an emission line cloud of initial density 10 cm3^{-3}, temperature 10410^4 K, and size 200 pc, being overtaken by a strong shock wave. Whereas previous simple models proposed that such a cloud would either be completely destroyed, or simply shrink in size, our results show a different and more complex behaviour: due to rapid cooling, the cloud breaks up into many small and dense fragments, which can survive for a long time. We show that such rapid cooling behaviour is in fact expected for a wide range of cloud and shock properties. This process applies to the evolution of emission line clouds being overtaken by the cocoon of a radio jet. The resulting small clouds would be Jeans unstable, and form stars. Our results thus give theoretical credibility to the process of jet induced star formation, one of the explanations for the alignment of the optical/UV and radio axis observed in high redshift radio galaxies.Comment: 4 pages, 2 figures, movies available at http://www.strw.leidenuniv.nl/TheoryGroup/IG-Cloud.htm

    An Analytical Framework to Describe the Interactions Between Individuals and a Continuum

    Full text link
    We consider a discrete set of individual agents interacting with a continuum. Examples might be a predator facing a huge group of preys, or a few shepherd dogs driving a herd of sheeps. Analytically, these situations can be described through a system of ordinary differential equations coupled with a scalar conservation law in several space dimensions. This paper provides a complete well posedness theory for the resulting Cauchy problem. A few applications are considered in detail and numerical integrations are provided

    Consistent thermodynamic derivative estimates for tabular equations of state

    Full text link
    Numerical simulations of compressible fluid flows require an equation of state (EOS) to relate the thermodynamic variables of density, internal energy, temperature, and pressure. A valid EOS must satisfy the thermodynamic conditions of consistency (derivation from a free energy) and stability (positive sound speed squared). When phase transitions are significant, the EOS is complicated and can only be specified in a table. For tabular EOS's such as SESAME from Los Alamos National Laboratory, the consistency and stability conditions take the form of a differential equation relating the derivatives of pressure and energy as functions of temperature and density, along with positivity constraints. Typical software interfaces to such tables based on polynomial or rational interpolants compute derivatives of pressure and energy and may enforce the stability conditions, but do not enforce the consistency condition and its derivatives. We describe a new type of table interface based on a constrained local least squares regression technique. It is applied to several SESAME EOS's showing how the consistency condition can be satisfied to round-off while computing first and second derivatives with demonstrated second-order convergence. An improvement of 14 orders of magnitude over conventional derivatives is demonstrated, although the new method is apparently two orders of magnitude slower, due to the fact that every evaluation requires solving an 11-dimensional nonlinear system.Comment: 29 pages, 9 figures, 16 references, submitted to Phys Rev

    Derivation, Properties, and Simulation of a Gas-Kinetic-Based, Non-Local Traffic Model

    Full text link
    We derive macroscopic traffic equations from specific gas-kinetic equations, dropping some of the assumptions and approximations made in previous papers. The resulting partial differential equations for the vehicle density and average velocity contain a non-local interaction term which is very favorable for a fast and robust numerical integration, so that several thousand freeway kilometers can be simulated in real-time. The model parameters can be easily calibrated by means of empirical data. They are directly related to the quantities characterizing individual driver-vehicle behavior, and their optimal values have the expected order of magnitude. Therefore, they allow to investigate the influences of varying street and weather conditions or freeway control measures. Simulation results for realistic model parameters are in good agreement with the diverse non-linear dynamical phenomena observed in freeway traffic.Comment: For related work see http://www.theo2.physik.uni-stuttgart.de/helbing.html and http://www.theo2.physik.uni-stuttgart.de/treiber.htm

    New Formalism for Numerical Relativity

    Full text link
    We present a new formulation of the Einstein equations that casts them in an explicitly first order, flux-conservative, hyperbolic form. We show that this now can be done for a wide class of time slicing conditions, including maximal slicing, making it potentially very useful for numerical relativity. This development permits the application to the Einstein equations of advanced numerical methods developed to solve the fluid dynamic equations, {\em without} overly restricting the time slicing, for the first time. The full set of characteristic fields and speeds is explicitly given.Comment: uucompresed PS file. 4 pages including 1 figure. Revised version adds a figure showing a comparison between the standard ADM approach and the new formulation. Also available at http://jean-luc.ncsa.uiuc.edu/Papers/ Appeared in Physical Review Letters 75, 600 (1995
    corecore