5,469 research outputs found

    A Manifestly Gauge-Invariant Approach to Quantum Theories of Gauge Fields

    Full text link
    In gauge theories, physical histories are represented by space-time connections modulo gauge transformations. The space of histories is thus intrinsically non-linear. The standard framework of constructive quantum field theory has to be extended to face these {\it kinematical} non-linearities squarely. We first present a pedagogical account of this problem and then suggest an avenue for its resolution.Comment: 27 pages, CGPG-94/8-2, latex, contribution to the Cambridge meeting proceeding

    Properties of air and combustion products of fuels with air

    Get PDF
    Thermodynamic and transport properties include ratio of specific heats, molecular weight, viscosity, heat capacity, thermal conductivity, and Prandtl number. Properties are calculated from 300 to 2500 degrees K and for pressures of three and ten atmospheres

    The Mystery of the Ramsey Fringe that Didn't Chirp

    Get PDF
    We use precision microwave spectroscopy of magnetically trapped, ultra-cold 87Rb to characterize intra- and inter-state density correlations. The cold collision shifts for both normal and condensed clouds are measured. The results verify the presence of the sometimes controversial "factors of two", in normal-cloud mean-field energies, both within a particular state and between two distinct spin species. One might expect that as two spin species decohere, the inter-state factor of two would revert to unity, but the associated frequency chirp one naively expects from such a trend is not observed in our data.Comment: Proceedings of the 18th International Conference on Atomic Physics (ICAP 2002

    Geometry of Generic Isolated Horizons

    Full text link
    Geometrical structures intrinsic to non-expanding, weakly isolated and isolated horizons are analyzed and compared with structures which arise in other contexts within general relativity, e.g., at null infinity. In particular, we address in detail the issue of singling out the preferred normals to these horizons required in various applications. This work provides powerful tools to extract invariant, physical information from numerical simulations of the near horizon, strong field geometry. While it complements the previous analysis of laws governing the mechanics of weakly isolated horizons, prior knowledge of those results is not assumed.Comment: 37 pages, REVTeX; Subsections V.B and V.C moved to a new Appenedix to improve the flow of main argument

    Quasi-local rotating black holes in higher dimension: geometry

    Full text link
    With a help of a generalized Raychaudhuri equation non-expanding null surfaces are studied in arbitrarily dimensional case. The definition and basic properties of non-expanding and isolated horizons known in the literature in the 4 and 3 dimensional cases are generalized. A local description of horizon's geometry is provided. The Zeroth Law of black hole thermodynamics is derived. The constraints have a similar structure to that of the 4 dimensional spacetime case. The geometry of a vacuum isolated horizon is determined by the induced metric and the rotation 1-form potential, local generalizations of the area and the angular momentum typically used in the stationary black hole solutions case.Comment: 32 pages, RevTex

    Volume and Quantizations

    Get PDF
    The aim of this letter is to indicate the differences between the Rovelli-Smolin quantum volume operator and other quantum volume operators existing in the literature. The formulas for the operators are written in a unifying notation of the graph projective framework. It is clarified whose results apply to which operators and why.Comment: 8 page

    Spacetimes foliated by Killing horizons

    Full text link
    It seems to be expected, that a horizon of a quasi-local type, like a Killing or an isolated horizon, by analogy with a globally defined event horizon, should be unique in some open neighborhood in the spacetime, provided the vacuum Einstein or the Einstein-Maxwell equations are satisfied. The aim of our paper is to verify whether that intuition is correct. If one can extend a so called Kundt metric, in such a way that its null, shear-free surfaces have spherical spacetime sections, the resulting spacetime is foliated by so called non-expanding horizons. The obstacle is Kundt's constraint induced at the surfaces by the Einstein or the Einstein-Maxwell equations, and the requirement that a solution be globally defined on the sphere. We derived a transformation (reflection) that creates a solution to Kundt's constraint out of data defining an extremal isolated horizon. Using that transformation, we derived a class of exact solutions to the Einstein or Einstein-Maxwell equations of very special properties. Each spacetime we construct is foliated by a family of the Killing horizons. Moreover, it admits another, transversal Killing horizon. The intrinsic and extrinsic geometry of the transversal Killing horizon coincides with the one defined on the event horizon of the extremal Kerr-Newman solution. However, the Killing horizon in our example admits yet another Killing vector tangent to and null at it. The geometries of the leaves are given by the reflection.Comment: LaTeX 2e, 13 page

    Normal-superfluid interaction dynamics in a spinor Bose gas

    Get PDF
    Coherent behavior of spinor Bose-Einstein condensates is studied in the presence of a significant uncondensed (normal) component. Normal-superfluid exchange scattering leads to a near-perfect local alignment between the spin fields of the two components. Through this spin locking, spin-domain formation in the condensate is vastly accelerated as the spin populations in the condensate are entrained by large-amplitude spin waves in the normal component. We present data evincing the normal-superfluid spin dynamics in this regime of complicated interdependent behavior.Comment: 5 pages, 4 fig

    Decoherence-driven Cooling of a Degenerate Spinor Bose Gas

    Get PDF
    We investigate the relationship between the coherence of a partially Bose-condensed spinor gas and its temperature. We observe cooling of the normal component driven by decoherence as well the effect of temperature on decoherence rates.Comment: 4 pages, 2 figure
    corecore