695 research outputs found
Direct Characterization of Quantum Dynamics
The characterization of quantum dynamics is a fundamental and central task in
quantum mechanics. This task is typically addressed by quantum process
tomography (QPT). Here we present an alternative "direct characterization of
quantum dynamics" (DCQD) algorithm. In contrast to all known QPT methods, this
algorithm relies on error-detection techniques and does not require any quantum
state tomography. We illustrate that, by construction, the DCQD algorithm can
be applied to the task of obtaining partial information about quantum dynamics.
Furthermore, we argue that the DCQD algorithm is experimentally implementable
in a variety of prominent quantum information processing systems, and show how
it can be realized in photonic systems with present day technology.Comment: 4 pages, 2 figures, published versio
Channel Capacities of an Exactly Solvable Spin-Star System
We calculate the entanglement-assisted and unassisted channel capacities of
an exactly solvable spin star system, which models the quantum dephasing
channel. The capacities for this non-Markovian model exhibit a strong
dependence on the coupling strengths of the bath spins with the system, the
bath temperature, and the number of bath spins. For equal couplings and bath
frequencies, the channel becomes periodically noiseless.Comment: 8 pages, 5 figure
Few-body spin couplings and their implications for universal quantum computation
Electron spins in semiconductor quantum dots are promising candidates for the
experimental realization of solid-state qubits. We analyze the dynamics of a
system of three qubits arranged in a linear geometry and a system of four
qubits arranged in a square geometry. Calculations are performed for several
quantum dot confining potentials. In the three-qubit case, three-body effects
are identified that have an important quantitative influence upon quantum
computation. In the four-qubit case, the full Hamiltonian is found to include
both three-body and four-body interactions that significantly influence the
dynamics in physically relevant parameter regimes. We consider the implications
of these results for the encoded universality paradigm applied to the
four-electron qubit code; in particular, we consider what is required to
circumvent the four-body effects in an encoded system (four spins per encoded
qubit) by the appropriate tuning of experimental parameters.Comment: 1st version: 33 pages, 25 figures. Described at APS March Meeting in
2004 (P36.010) and 2005 (B17.00009). Most figures made uglier here to reduce
file size. 2nd version: 19 pages, 9 figures. Much mathematical detail chopped
away after hearing from journal referee; a few typos correcte
One-spin quantum logic gates from exchange interactions and a global magnetic field
It has been widely assumed that one-qubit gates in spin-based quantum
computers suffer from severe technical difficulties. We show that one-qubit
gates can in fact be generated using only modest and presently feasible
technological requirements. Our solution uses only global magnetic fields and
controllable Heisenberg exchange interactions, thus circumventing the need for
single-spin addressing.Comment: 4 pages, incl. 1 figure. This significantly modified version accepted
for publication in Phys. Rev. Let
Fault-Tolerant Quantum Dynamical Decoupling
Dynamical decoupling pulse sequences have been used to extend coherence times
in quantum systems ever since the discovery of the spin-echo effect. Here we
introduce a method of recursively concatenated dynamical decoupling pulses,
designed to overcome both decoherence and operational errors. This is important
for coherent control of quantum systems such as quantum computers. For
bounded-strength, non-Markovian environments, such as for the spin-bath that
arises in electron- and nuclear-spin based solid-state quantum computer
proposals, we show that it is strictly advantageous to use concatenated, as
opposed to standard periodic dynamical decoupling pulse sequences. Namely, the
concatenated scheme is both fault-tolerant and super-polynomially more
efficient, at equal cost. We derive a condition on the pulse noise level below
which concatenated is guaranteed to reduce decoherence.Comment: 5 pages, 4 color eps figures. v3: Minor changes. To appear in Phys.
Rev. Let
- …
