3,017 research outputs found
The magnetic form factor of the deuteron in chiral effective field theory
We calculate the magnetic form factor of the deuteron up to O(eP^4) in the
chiral EFT expansion of the electromagnetic current operator. The two LECs
which enter the two-body part of the isoscalar NN three-current operator are
fit to experimental data, and the resulting values are of natural size. The
O(eP^4) description of G_M agrees with data for momentum transfers Q^2 < 0.35
GeV^2.Comment: 4 pages, 2 figure
Recommended from our members
Visual Analytics for Understanding Spatial Situations from Episodic Movement Data
Continuing advances in modern data acquisition techniques result in rapidly growing amounts of geo-referenced data about moving objects and in emergence of new data types. We define episodic movement data as a new complex data type to be considered in the research fields relevant to data analysis. In episodic movement data, position measurements may be separated by large time gaps, in which the positions of the moving objects are unknown and cannot be reliably reconstructed. Many of the existing methods for movement analysis are designed for data with fine temporal resolution and cannot be applied to discontinuous trajectories. We present an approach utilizing Visual Analytics methods to explore and understand the temporal variation of spatial situations derived from episodic movement data by means of spatio-temporal aggregation. The situations are defined in terms of the presence of moving objects in different places and in terms of flows (collective movements) among the places. The approach, which combines interactive visual displays with clustering of the spatial situations, is presented by example of a real dataset collected by Bluetooth sensors
Simulator for Microlens Planet Surveys
We summarize the status of a computer simulator for microlens planet surveys.
The simulator generates synthetic light curves of microlensing events observed
with specified networks of telescopes over specified periods of time.
Particular attention is paid to models for sky brightness and seeing,
calibrated by fitting to data from the OGLE survey and RoboNet observations in
2011. Time intervals during which events are observable are identified by
accounting for positions of the Sun and the Moon, and other restrictions on
telescope pointing. Simulated observations are then generated for an algorithm
that adjusts target priorities in real time with the aim of maximizing planet
detection zone area summed over all the available events. The exoplanet
detection capability of observations was compared for several telescopes.Comment: Proc. IAU Symp. No. 293 "Formation, detection, and characterization
of extrasolar habitable planets", ed. by N. Haghighipour. 4 pages, in pres
Few-nucleon systems with state-of-the-art chiral nucleon-nucleon forces
We apply improved nucleon-nucleon potentials up to fifth order in chiral
effective field theory, along with a new analysis of the theoretical truncation
errors, to study nucleon-deuteron (Nd) scattering and selected low-energy
observables in 3H, 4He, and 6Li. Calculations beyond second order differ from
experiment well outside the range of quantified uncertainties, providing truly
unambiguous evidence for missing three-nucleon forces within the employed
framework. The sizes of the required three-nucleon force contributions agree
well with expectations based on Weinberg's power counting. We identify the
energy range in elastic Nd scattering best suited to study three-nucleon force
effects and estimate the achievable accuracy of theoretical predictions for
various observables.Comment: 5 pages, 5 figure
Nuclear electric dipole moments in chiral effective field theory
We provide a consistent and complete calculation of the electric dipole moments of the deuteron, helion, and triton in the framework of chiral effective field theory. The CP-conserving and CP-violating interactions are treated on equal footing and we consider CP-violating one-, two-, and three-nucleon operators up to next-to-leading-order in the chiral power counting. In particular, we calculate for the first time EDM contributions induced by the CP-violating three-pion operator. We find that effects of CP-violating nucleon-nucleon contact interactions are larger than those found in previous studies based on phenomenological models for the CP-conserving nucleon-nucleon interactions. Our results which apply to any model of CP violation in the hadronic sector can be used to test various scenarios of CP violation. As examples, we study the implications of our results on the QCD θ-term and the minimal left-right symmetric model
Specialized odorant receptors in social insects that detect cuticular hydrocarbon cues and candidate pheromones.
Eusocial insects use cuticular hydrocarbons as components of pheromones that mediate social behaviours, such as caste and nestmate recognition, and regulation of reproduction. In ants such as Harpegnathos saltator, the queen produces a pheromone which suppresses the development of workers' ovaries and if she is removed, workers can transition to a reproductive state known as gamergate. Here we functionally characterize a subfamily of odorant receptors (Ors) with a nine-exon gene structure that have undergone a massive expansion in ants and other eusocial insects. We deorphanize 22 representative members and find they can detect cuticular hydrocarbons from different ant castes, with one (HsOr263) that responds strongly to gamergate extract and a candidate queen pheromone component. After systematic testing with a diverse panel of hydrocarbons, we find that most Harpegnathos saltator Ors are narrowly tuned, suggesting that several receptors must contribute to detection and discrimination of different cuticular hydrocarbons important in mediating eusocial behaviour.Cuticular hydrocarbons (CHC) mediate the interactions between individuals in eusocial insects, but the sensory receptors for CHCs are unclear. Here the authors show that in ants such as H. saltator, the 9-exon subfamily of odorant receptors (HsOrs) responds to CHCs, and ectopic expression of HsOrs in Drosophila neurons imparts responsiveness to CHCs
Refitting of combined inner detector and muon spectrometer tracks from Monte Carlo samples by using the Kalman fitter and the STEP algorithm in the ATLAS experiment
In this paper we refit combined muon tracks using the Kalman fitter and the simultaneous track and error propagation (STEP) algorithm of the ATLAS tracking software. The muon tracks are simulated by GEANT4 in the full detector description, reconstructed by MUID, and refitted by the Kalman fitter in the ATLAS TrackingGeometry. The relative transverse momentum resolution of the refitted tracks is compared to the resolution of the refits done by the global chi-square track fitter, along with the resolution found by the MUID and STACO muon combination algorithms. Reconstructed invariant masses are compared in a similar way
Crop Species Diversity Changes in the United States: 1978-2012
Citation: Aguilar, J., Gramig, G. G., Hendrickson, J. R., Archer, D. W., Forcella, F., & Liebig, M. A. (2015). Crop Species Diversity Changes in the United States: 1978-2012. Plos One, 10(8), 14. doi:10.1371/journal.pone.0136580Anecdotal accounts regarding reduced US cropping system diversity have raised concerns about negative impacts of increasingly homogeneous cropping systems. However, formal analyses to document such changes are lacking. Using US Agriculture Census data, which are collected every five years, we quantified crop species diversity from 1978 to 2012, for the contiguous US on a county level basis. We used Shannon diversity indices expressed as effective number of crop species (ENCS) to quantify crop diversity. We then evaluated changes in county-level crop diversity both nationally and for each of the eight Farm Resource Regions developed by the National Agriculture Statistics Service. During the 34 years we considered in our analyses, both national and regional ENCS changed. Nationally, crop diversity was lower in 2012 than in 1978. However, our analyses also revealed interesting trends between and within different Resource Regions. Overall, the Heartland Resource Region had the lowest crop diversity whereas the Fruitful Rim and Northern Crescent had the highest. In contrast to the other Resource Regions, the Mississippi Portal had significantly higher crop diversity in 2012 than in 1978. Also, within regions there were differences between counties in crop diversity. Spatial autocorrelation revealed clustering of low and high ENCS and this trend became stronger over time. These results show that, nationally counties have been clustering into areas of either low diversity or high diversity. Moreover, a significant trend of more counties shifting to lower rather than to higher crop diversity was detected. The clustering and shifting demonstrates a trend toward crop diversity loss and attendant homogenization of agricultural production systems, which could have far-reaching consequences for provision of ecosystem system services associated with agricultural systems as well as food system sustainability
- …
