338 research outputs found
A Multiwavelength Study of Evolved Massive Stars in the Galactic Center
The central region of the Milky Way provides a unique laboratory for a
systematic, spatially-resolved population study of evolved massive stars of
various types in a relatively high metallicity environment. We have conducted a
multi-wavelength data analysis of 180 such stars or candidates, most of which
were drawn from a recent large-scale HST/NICMOS narrow-band Pa-a survey, plus
additional 14 Wolf-Rayet stars identified in earlier ground-based spectroscopic
observations of the same field. The multi-wavelength data include broad-band IR
photometry measurements from HST/NICMOS, SIRIUS, 2MASS, Spitzer/IRAC, and
Chandra X-ray observations. We correct for extinctions toward individual stars,
improve the Pa-a line equivalent width measurements, quantify the substantial
mid-IR dust emission associated with WC stars, and find X-ray counterparts. In
the process, we identify 10 foreground sources, some of which may be nearby
cataclysmic variables. The WN stars in the Arches and Central clusters show
correlations between the Pa-a equivalent width and the adjacent continuum
emission. However, the WN stars in the latter cluster are systematically dimmer
than those in the Arches cluster, presumably due to the different ages of the
two clusters. In the EW-magnitude plot, WNL stars, WC stars and OB supergiants
roughly fall into three distinct regions. We estimate that the dust mass
associated with individual WC stars in the Quintuplet cluster can reach 1e-5 M,
or more than one order of magnitude larger than previous estimates. Thus WC
stars could be a significant source of dust in the galaxies of the early
universe. Nearly half of the evolved massive stars in the GC are located
outside the three known massive stellar clusters. The ionization of several
compact HII regions can be accounted for by their enclosed individual evolved
massive stars, which thus likely formed in isolation or in small groups.Comment: Accepted for publication in MNRA
X-RED: A Satellite Mission Concept To Detect Early Universe Gamma Ray Bursts
Gamma ray bursts (GRBs) are the most energetic eruptions known in the
Universe. Instruments such as Compton-GRO/BATSE and the GRB monitor on BeppoSAX
have detected more than 2700 GRBs and, although observational confirmation is
still required, it is now generally accepted that many of these bursts are
associated with the collapse of rapidly spinning massive stars to form black
holes. Consequently, since first generation stars are expected to be very
massive, GRBs are likely to have occurred in significant numbers at early
epochs. X-red is a space mission concept designed to detect these extremely
high redshifted GRBs, in order to probe the nature of the first generation of
stars and hence the time of reionisation of the early Universe. We demonstrate
that the gamma and x-ray luminosities of typical GRBs render them detectable up
to extremely high redshifts (z~10-30), but that current missions such as HETE2
and SWIFT operate outside the observational range for detection of high
redshift GRB afterglows. Therefore, to redress this, we present a complete
mission design from the science case to the mission architecture and payload,
the latter comprising three instruments, namely wide field x-ray cameras to
detect high redshift gamma-rays, an x-ray focussing telescope to determine
accurate coordinates and extract spectra, and an infrared spectrograph to
observe the high redshift optical afterglow. The mission is expected to detect
and identify for the first time GRBs with z > 10, thereby providing constraints
on properties of the first generation of stars and the history of the early
Universe.Comment: 14 pages, 10 figures, spie.cls neede
Моделирование уравнений проекционного осциллографирования на машине "ЭМУ-10"
The passive-alignment-packaging technique presented in this work provides a method for mounting tolerance-insensitive optical components e.g. non-linear crystals by means of mechanical stops. The requested tolerances for the angle deviation are ±100 µrad and for the position tolerance ±100 µm. Only the angle tolerances were investigated, because they are more critical. The measurements were carried out with an autocollimator. Fused silica components were used for test series. A solder investigation was carried out. Different types of solder were tested. Due to good solderability on air and low induced stress in optical components, Sn based solders were indicated as the most suitable solders. In addition several concepts of reflow soldering configuration were realized. In the first iteration a system with only the alignment of the yaw angle was implemented. The deviation for all materials after the thermal and mechanical cycling was within the tolerances. The solderability of BBO and LBO crystals was investigated and concepts for mounting were developed
О необходимости прослеживания Балейско-Дарасунского разлома в пределах Борщевочного кряжа
In this paper we present the development of a compact, thermo-optically stable and vibration and mechanical shock resistant mounting technique by soldering of optical components. Based on this technique a new generation of laser sources for aerospace applications is designed. In these laser systems solder technique replaces the glued and bolted connections between optical component, mount and base plate. Alignment precision in the arc second range and realization of long term stability of every single part in the laser system is the main challenge. At the Fraunhofer Institute for Laser Technology ILT a soldering and mounting technique has been developed for high precision packaging. The specified environmental boundary conditions (e.g. a temperature range of -40 °C to +50 °C) and the required degrees of freedom for the alignment of the components have been taken into account for this technique. In general the advantage of soldering compared to gluing is that there is no outgassing. In addition no flux is needed in our special process. The joining process allows multiple alignments by remelting the solder. The alignment is done in the liquid phase of the solder by a 6 axis manipulator with a step width in the nm range and a tilt in the arc second range. In a next step the optical components have to pass the environmental tests. The total misalignment of the component to its adapter after the thermal cycle tests is less than 10 arc seconds. The mechanical stability tests regarding shear, vibration and shock behavior are well within the requirements
Некоторые результаты применения метода геометрического анализа дизъюнктов для поисков смещенного крыла пласта в Прокопьевском районе Кузбасса
In this paper we present the development of a compact, thermo-optically stable and vibration and mechanical shock resistant mounting technique by soldering of optical components. Based on this technique, new generations of laser pump sources for aerospace applications are designed. In these laser systems the used soldering technique replaces the glued connection between the optical component and its join partner. The main challenges are the alignment accuracy in the arc second range and the realization of the long term stability of every single part in the laser system (e.g. resonator mirrors)
Pressure-induced structural change in liquid GaIn eutectic alloy
Synchrotron x-ray diffraction reveals a pressure induced crystallization at about 3.4 GPa and apolymorphic transition near 10.3 GPa when compressed a liquid GaIn eutectic alloy up to ~13 GPa atroom temperature in a diamond anvil cell. Upon decompression, the high pressure crystalline phaseremains almost unchanged until it transforms to the liquid state at around 2.3 GPa. The ab initiomolecular dynamics calculations can reproduce the low pressure crystallization and give some hints onthe understanding of the transition between the liquid and the crystalline phase on the atomic level.The calculated pair correlation function g(r) shows a non-uniform contraction reflected by the differentcompressibility between the short (1st shell) and the intermediate (2nd to 4th shells). It is concludedthat the pressure-induced liquid-crystalline phase transformation likely arises from the changes in localatomic packing of the nearest neighbors as well as electronic structures at the transition pressure
Universal phase transitions of B1 structured stoichiometric transition-metal carbides
The high-pressure phase transitions of B1-structured stoichiometric
transition metal carbides (TMCs, TM=Ti, Zr, Hf, V, Nb, and Ta) were
systematically investigated using ab initio calculations. These carbides
underwent universal phase transitions along two novel phase-transition routes,
namely, B1\rightarrowdistorted TlI (TlI')\rightarrowTlI and/or
B1\rightarrowdistorted TiB (TiB')\rightarrowTiB, when subjected to pressures.
The two routes can coexist possibly because of the tiny enthalpy differences
between the new phases under corresponding pressures. Four new phases result
from atomic slips of the B1-structured parent phases under pressure. After
completely releasing the pressure, taking TiC as a representative of TMCs, only
its new TlI'-type phase is mechanically and dynamically stable, and may be
recovered.Comment: [email protected]
Stellar Populations in the Galactic Center
We discuss the stellar content of the Galactic Center, and in particular,
recent estimates of the star formation rate (SFR). We discuss pros and cons of
the different stellar tracers and focus our attention on the SFR based on the
three classical Cepheids recently discovered in the Galactic Center. We also
discuss stellar populations in field and cluster stars and present some
preliminary results based on near-infrared photometry of a field centered on
the young massive cluster Arches. We also provide a new estimate of the true
distance modulus to the Galactic Center and we found
14.490.02(standard)0.10(systematic) mag (7.91 kpc).
Current estimate agrees quite well with similar photometric and kinematic
distance determinations available in the literature. We also discuss the
metallicity gradient of the thin disk and the sharp change in the slope when
moving across the edge of the inner disk, the Galactic Bar and the Galactic
Center. The difference becomes even more compelling if we take into account
that metal abundances are based on young stellar tracers (classical Cepheids,
Red Supergiants, Luminous Blue Variables). Finally, we briefly outline the
possible mechanisms that might account for current empirical evidence.Comment: To be published in the Astrophysics and Space Science Proceeding
On the nature of the galactic early-B hypergiants
Despite their importance to a number of astrophysical fields, the lifecycles
of very massive stars are still poorly defined. In order to address this
shortcoming, we present a detailed quantitative study of the physical
properties of four early-B hypergiants (BHGs); Cyg OB2 #12, zeta Sco, HD190603
and BP Cru. These are combined with an analysis of their long-term
spectroscopic and photometric behaviour in order to determine their
evolutionary status. The long-term datasets revealed that they are remarkably
stable over long periods (>40yr), with the possible exception of zeta Sco prior
to the 20th century, in contrast to the typical excursions that characterise
luminous blue variables (LBVs). Zeta Sco, HD190603 and BP Cru possess physical
properties intermediate between B supergiants and LBVs; we therefore suggest
that BHGs are the immediate descendants and progenitors (respectively) of such
stars (for initial masses in the range ~30-60Msun). In contrast, while the wind
properties of Cyg OB2 #12 are consistent with this hypothesis, the combination
of extreme luminosity and spectroscopic mass (~110Msun) and comparatively low
temperature means it cannot be accommodated in such a scheme. Likewise, despite
its co-location with several LBVs above the Humphreys-Davidson (HD) limit, the
lack of long term variability and its unevolved chemistry apparently excludes
such an identification. Since such massive stars are not expected to evolve to
such cool temperatures, the properties of Cyg OB2 #12 are difficult to
understand under current evolutionary paradigms. [ABRIDGED]Comment: 36 pages, 19 figures (of which 17 pages are online supplemental
material). Accepted for publication in Astronomy and Astrophysic
Pargasite at high pressure and temperature
The P-T phase stability field, the thermoelastic behavior and the P-induced deformation mechanisms at the atomic scale of pargasite crystals, from the "phlogopite peridotite unit" of the Finero mafic-ultramafic complex (Ivrea-Verbano Formation, Italy), have been investigated by a series of in situ experiments: (a) at high pressure (up to 20.1 GPa), by single-crystal synchrotron X-ray diffraction with a diamond anvil cell, (b) at high temperature (up to 823 K), by powder synchrotron X-ray diffraction using a hot air blower device, and (c) at simultaneous HP-HT conditions, by single-crystal synchrotron X-ray diffraction with a resistive-heated diamond anvil cell (Pmax = 16.5 GPa, Tmax = 1200 K). No phase transition has been observed within the P-T range investigated. At ambient T, the refined compressional parameters, calculated by fitting a second-order Birch-Murnaghan Equation of State (BM-EoS), are: V0 = 915.2(8) \uc53 and KP0,T0 = 95(2) GPa (\u3b2P0,T0 = 0.0121(2) GPa-1) for the unit-cell volume; a0 = 9.909(4) \uc5 and K(a)P0,T0 = 76(2) GPa for the a-axis; b0 = 18.066(7) \uc5 and K(b)P0,T0 = 111(2) GPa for the b-axis; c0 = 5.299(5) \uc5 and K(c)P0,T0 = 122(12) GPa for the c-axis [K(c)P0,T0 ~ K(b)P0,T0 > K(a)P0,T0]. The high-pressure structure refinements (at ambient T) show a moderate contraction of the TO4 double chain and a decrease of its bending in response to the hydrostatic compression, along with a pronounced compressibility of the A- and M(4)-polyhedra [KP0,T0(A) = 38(2) GPa, KP0,T0(M4) = 79(5) GPa] if compared to the M(1)-, M(2)-, M(3)-octahedra [KP0,T0(M1,2,3) 64 120 GPa] and to the rigid tetrahedra [KP0,T0(T1,T2) ~ 300 GPa]. The thermal behavior, at ambient pressure up to 823 K, was modelled with Berman's formalism, which gives: V0 = 909.1(2) \uc53, \u3b10 = 2.7(2)*10-5 K-1 and \u3b11 = 1.4(6)*10-9 K-2 [with \u3b10(a) = 0.47(6)*10-5 K-1, \u3b10(b) = 1.07(4)*10-5 K-1, and \u3b10(c) = 0.97(7)*10-5 K-1]. The petrological implications for the experimental findings of this study are discussed
- …
