9 research outputs found
Random forest feature selection, fusion and ensemble strategy: combining multiple morphological MRI measures to discriminate among healthy elderly, MCI, cMCI and Alzheimer's disease patients: from the Alzheimer's disease neuroimaging initiative (ADNI) database
Background
In the era of computer-assisted diagnostic tools for various brain diseases, Alzheimer’s disease (AD) covers a large percentage of neuroimaging research, with the main scope being its use in daily practice. However, there has been no study attempting to simultaneously discriminate among Healthy Controls (HC), early mild cognitive impairment (MCI), late MCI (cMCI) and stable AD, using features derived from a single modality, namely MRI.
New method
Based on preprocessed MRI images from the organizers of a neuroimaging challenge,3 we attempted to quantify the prediction accuracy of multiple morphological MRI features to simultaneously discriminate among HC, MCI, cMCI and AD. We explored the efficacy of a novel scheme that includes multiple feature selections via Random Forest from subsets of the whole set of features (e.g. whole set, left/right hemisphere etc.), Random Forest classification using a fusion approach and ensemble classification via majority voting.
From the ADNI database, 60 HC, 60 MCI, 60 cMCI and 60 CE were used as a training set with known labels. An extra dataset of 160 subjects (HC: 40, MCI: 40, cMCI: 40 and AD: 40) was used as an external blind validation dataset to evaluate the proposed machine learning scheme.
Results
In the second blind dataset, we succeeded in a four-class classification of 61.9% by combining MRI-based features with a Random Forest-based Ensemble Strategy. We achieved the best classification accuracy of all teams that participated in this neuroimaging competition.
Comparison with existing method(s)
The results demonstrate the effectiveness of the proposed scheme to simultaneously discriminate among four groups using morphological MRI features for the very first time in the literature.
Conclusions
Hence, the proposed machine learning scheme can be used to define single and multi-modal biomarkers for AD
How random is the random forest? Random forest algorithm on the service of structural imaging biomarkers for Alzheimer's disease: from Alzheimer's disease neuroimaging initiative (ADNI) database
Neuroinformatics is a fascinating research field that applies computational models and analytical tools to high dimensional experimental neuroscience data for a better understanding of how the brain functions or dysfunctions in brain diseases. Neuroinformaticians work in the intersection of neuroscience and informatics supporting the integration of various subdisciplines (behavioural neuroscience, genetics, cognitive psychology etc) working on brain research. Neuroinformaticians are the pathway of information exchange between informaticians and clinicians for a better understanding of the outcome of computational models and the clinical interpretation of the analysis. Machine learning is one of the most significant computational developments in the last decade giving tools to neuroinformaticians and finally to radiologists and clinicians for an automatic and early diagnosis-prognosis of a brain disease. Random Forest (RF) algorithm has been successfully applied to high-dimensional neuroimaging data for feature reduction and also has been applied to classify the clinical label of a subject using single or multi-modal neuroimaging datasets. Our aim was to review the studies where RF was applied to correctly predict the Alzheimer’s disease (AD), the conversion from Mild Cognitive Impairment (MCI) and its robustness to overfitting, outliers and handling of non-linear data. Finally, we described our RF-based model that gave us the 1st position in an international challenge for automated prediction of MCI from MRI data
Random Forest Feature Selection, Fusion and Ensemble Strategy: Combining Multiple Morphological MRI Measures to Discriminate among healthy elderly, MCI, cMCI and Alzheimer's disease patients: from the Alzheimer’s disease neuroimaging initiative (ADNI) database
AbstractBackgroundIn the era of computer-assisted diagnostic tools for various brain diseases, Alzheimer’s disease (AD) covers a large percentage of neuroimaging research, with the main scope being its use in daily practice. However, there has been no study attempting to simultaneously discriminate among Healthy Controls (HC), early mild cognitive impairment (MCI), late MCI (cMCI) and stable AD, using features derived from a single modality, namely MRI.New MethodBased on preprocessed MRI images from the organizers of a neuroimaging challenge2, we attempted to quantify the prediction accuracy of multiple morphological MRI features to simultaneously discriminate among HC, MCI, cMCI and AD. We explored the efficacy of a novel scheme that includes multiple feature selections via Random Forest from subsets of the whole set of features (e.g. whole set, left/right hemisphere etc.), Random Forest classification using a fusion approach and ensemble classification via majority voting.From the ADNI database, 60 HC, 60 MCI, 60 cMCI and 60 AD were used as a training set with known labels. An extra dataset of 160 subjects (HC: 40, MCI: 40, cMCI: 40 and AD: 40) was used as an external blind validation dataset to evaluate the proposed machine learning scheme.ResultsIn the second blind dataset, we succeeded in a four-class classification of 61.9% by combining MRI-based features with a Random Forest-based Ensemble Strategy. We achieved the best classification accuracy of all teams that participated in this neuroimaging competition.Comparison with Existing Method(s)The results demonstrate the effectiveness of the proposed scheme to simultaneously discriminate among four groups using morphological MRI features for the very first time in the literature.ConclusionsHence, the proposed machine learning scheme can be used to define single and multi-modal biomarkers for AD.HIGHLIGHTS1stplace in International Challenge for Automated Prediction of MCI from MRI DataMulti-class classification of normal control, MCI, converting MCI, and Alzheimer’s diseaseMorphometric measures from 3D T1 brain MRI images have been analysed (ADNI1 cohort).ARandom Forest Feature Selection, Fusion and Ensemble Strategywas applied to classification and prediction of AD.Accuracy and robustness have been assessed in a blind dataset</jats:sec
Exploiting the temporal patterning of transient VEP signals: A statistical single-trial methodology with implications to brain–computer interfaces (BCIs)
An Evolutionary Improvement of the Mahalanobis – Taguchi Strategy and Its Application to Intrusion Detection
Fuzzy Based Latent Dirichlet Allocation in Spatio-Temporal and Randomized Least Angle Regression
A Hybrid approach for biomedical relation extraction using finite state automata and random forest-weighted fusion
Comunicació presentada a: The 18th International Conference on Computational Linguistics and Intelligent Text Processing (CICLing 2017), celebrada a Budapest, Hungria, del 17 al 23 d'abril de 2017.The automatic extraction of relations between medical entities found in related texts is considered to be a very important task, due to the multitude of applications that it can support, from question answering systems to the devel-opment of medical ontologies. Many different methodologies have been pre-sented and applied to this task over the years. Of particular interest are hybrid approaches, in which different techniques are combined in order to improve the individual performance of either one of them. In this study, we extend a previ-ously established hybrid framework for medical relation extraction, which we modify by enhancing the pattern-based part of the framework and by applying a more sophisticated weighting method. Most notably, we replace the use of regu-lar expressions with finite state automata for the pattern-building part, while the fusion part is replaced by a weighting strategy that is based on the operational capabilities of the Random Forests algorithm. The experimental results indicate the superiority of the proposed approach against the aforementioned well-established hybrid methodology and other state-of-the-art approaches.This work was supported by the project KRISTINA (H2020-645012), funded by the European Commission. Deidentified clinical records used in this research were provided by the i2b2 National Center for Biomedical Computing funded by U54LM008748 and were originally prepared for the Shared Tasks for Challenges in NLP for Clinical Data organized by Dr. Ozlem Uzuner, i2b2 and SUNY
