2,391 research outputs found
Staying over-optimistic about the future : uncovering attentional biases to climate change messages
There is considerable concern that the public are not getting the message about climate change. One possible explanation is ‘optimism bias’, where individuals overestimate the likelihood of positive events happening to them and underestimate the likelihood of negative events. Evidence from behavioural neuroscience suggest that this bias is underpinned by selective information processing, specifically through a reduced level of neural coding of undesirable information, and an unconscious tendency for optimists to avoid fixating negative information. Here we test how this bias in attention could relate to the processing of climate change messages. Using eye tracking, we found that level of dispositional optimism affected visual fixations on climate change messages. Optimists spent less time (overall dwell time) attending to any arguments about climate changes (either ‘for’ or ‘against’) with substantially shorter individual fixations on aspects of arguments for climate change, i.e. those that reflect the scientific consensus but are bad news. We also found that when asked to summarise what they had read, non-optimists were more likely to frame their recall in terms of the arguments ‘for’ climate change; optimists were significantly more likely to frame it in terms of a debate between two opposing positions. Those highest in dispositional optimism seemeed to have the strongest and most pronounced level of optimism bias when it came to estimating the probability of being personally affected by climate change. We discuss the importance of overcoming this cognitive bias to develop more effective strategies for communicating about climate change
Multi-Wavelength Variability of the Synchrotron Self-Compton Model for Blazar Emission
Motivated by recent reports of strongly correlated radio and X-ray
variability in 3C279 (Grandi, etal 1995), we have computed the relative
amplitudes of variations in the synchrotron flux at and the self-Compton
X-ray flux at 1 keV () for a homogeneous sphere of relativistic
electrons orbiting in a tangled magnetic field. Relative to synchrotron
self-Compton scattering without induced Compton scattering, stimulated
scattering reduces the amplitude of by as much as an order of
magnitude when \tau_T \gtwid 1. When varies in a fixed magnetic
field, increases monotonically from 0.01 at , the
self-absorption turnover frequency, to at . The relative
amplitudes of the correlated fluctuations in the radio-mm and X-ray fluxes from
3C279 are consistent with the synchrotron self-Compton model if varies
in a fixed magnetic field and induced Compton scattering is the dominant source
of radio opacity. The variation amplitudes are are too small to be produced by
the passage of a shock through the synchrotron emission region unless the
magnetic field is perpendicular to the shock front.Comment: 21 pages, 4 fig
On the Reliability of Cross Correlation Function Lag Determinations in Active Galactic Nuclei
Many AGN exhibit a highly variable luminosity. Some AGN also show a
pronounced time delay between variations seen in their optical continuum and in
their emission lines. In effect, the emission lines are light echoes of the
continuum. This light travel-time delay provides a characteristic radius of the
region producing the emission lines. The cross correlation function (CCF) is
the standard tool used to measure the time lag between the continuum and line
variations. For the few well-sampled AGN, the lag ranges from 1-100 days,
depending upon which line is used and the luminosity of the AGN. In the best
sampled AGN, NGC 5548, the H_beta lag shows year-to-year changes, ranging from
about 8.7 days to about 22.9 days over a span of 8 years. In this paper it is
demonstrated that, in the context of AGN variability studies, the lag estimate
using the CCF is biased too low and subject to a large variance. Thus the
year-to-year changes of the measured lag in NGC 5548 do not necessarily imply
changes in the AGN structure. The bias and large variance are consequences of
finite duration sampling and the dominance of long timescale trends in the
light curves, not due to noise or irregular sampling. Lag estimates can be
substantially improved by removing low frequency power from the light curves
prior to computing the CCF.Comment: To appear in the PASP, vol 111, 1999 Nov; 37 pages; 10 figure
iBelong@School: Understanding Young People’s Experiences of Learning During and Beyond the COVID-19 Pandemic
Recommended from our members
Measurement of the Neutrino Mass Splitting and Flavor Mixing by MINOS
Measurements of neutrino oscillations using the disappearance of muon neutrinos from the Fermilab NuMI neutrino beam as observed by the two MINOS detectors are reported. New analysis methods have been applied to an enlarged data sample from an exposure of 7.25×10^(20) protons on target. A fit to neutrino oscillations yields values of |Δm^2|=(2.32_(-0.08)^(+0.12))×10^(-3) eV^2 for the atmospheric mass splitting and sin^2(2θ)>0.90 (90% C.L.) for the mixing angle. Pure neutrino decay and quantum decoherence hypotheses are excluded at 7 and 9 standard deviations, respectively
Recommended from our members
New constraints on muon-neutrino to electron-neutrino transitions in MINOS
This paper reports results from a search for ν_μ → ν_e transitions by the MINOS experiment based on a 7×10^(20) protons-on-target exposure. Our observation of 54 candidate ν_e events in the far detector with a background of 49.1±7.0(stat)±2.7(syst) events predicted by the measurements in the near detector requires 2sin^2(2θ_(13))sin^2θ_(23)<0.12(0.20) at the 90% C.L. for the normal (inverted) mass hierarchy at δ_(CP)=0. The experiment sets the tightest limits to date on the value of θ_(13) for nearly all values of δ_(CP) for the normal neutrino mass hierarchy and maximal sin^2(2θ_(23))
Recommended from our members
Search for sterile neutrino mixing in the MINOS long-baseline experiment
A search for depletion of the combined flux of active neutrino species over a 735 km baseline is reported using neutral-current interaction data recorded by the MINOS detectors in the NuMI neutrino beam. Such a depletion is not expected according to conventional interpretations of neutrino oscillation data involving the three known neutrino flavors. A depletion would be a signature of oscillations or decay to postulated noninteracting sterile neutrinos, scenarios not ruled out by existing data. From an exposure of 3.18×10^(20) protons on target in which neutrinos of energies between ∼500 MeV and 120 GeV are produced predominantly as ν_μ, the visible energy spectrum of candidate neutral-current reactions in the MINOS far detector is reconstructed. Comparison of this spectrum to that inferred from a similarly selected near-detector sample shows that of the portion of the ν_μ flux observed to disappear in charged-current interaction data, the fraction that could be converting to a sterile state is less than 52% at 90% confidence level (C.L.). The hypothesis that active neutrinos mix with a single sterile neutrino via oscillations is tested by fitting the data to various models. In the particular four-neutrino models considered, the mixing angles θ_(24) and θ_(34) are constrained to be less than 11° and 56° at 90% C.L., respectively. The possibility that active neutrinos may decay to sterile neutrinos is also investigated. Pure neutrino decay without oscillations is ruled out at 5.4 standard deviations. For the scenario in which active neutrinos decay into sterile states concurrently with neutrino oscillations, a lower limit is established for the neutrino decay lifetime τ_3/m_3>2.1×10^(-12) s/eV at 90% C.L
Testing Lorentz Invariance and CPT Conservation with NuMI Neutrinos in the MINOS Near Detector
A search for a sidereal modulation in the MINOS near detector neutrino data
was performed. If present, this signature could be a consequence of Lorentz and
CPT violation as predicted by a class of extensions to the Standard Model. No
evidence for a sidereal signal in the data set was found, implying that there
is no significant change in neutrino propagation that depends on the direction
of the neutrino beam in a sun-centered inertial frame. Upper limits on the
magnitudes of the Lorentz and CPT violating terms in these extensions to the
Standard Model lie between 0.01-1% of the maximum expected, assuming a
suppression of these signatures by factor of .
Recommended from our members
Measurement of the underground atmospheric muon charge ratio using the MINOS Near Detector
The magnetized MINOS Near Detector, at a depth of 225 mwe, is used to measure the atmospheric muon charge ratio. The ratio of observed positive to negative atmospheric muon rates, using 301 days of data, is measured to be 1.266±0.001(stat)_(-0.014)^(+0.015)(syst). This measurement is consistent with previous results from other shallow underground detectors and is 0.108±0.019(stat+syst) lower than the measurement at the functionally identical MINOS Far Detector at a depth of 2070 mwe. This increase in charge ratio as a function of depth is consistent with an increase in the fraction of muons arising from kaon decay for increasing muon surface energie
- …
