2,059 research outputs found
Disrupted seasonal clockwork in the population dynamics of a freshwater copepod by climate warming
Life history responses are expected to accompany climate warming, yet little is known how long-term effects of climate and environmental change affect the seasonal dynamics of planktonic organisms. We used an historical data set from Lake Washington (U.S.A.) to quantify population responses of a calanoid copepod (Leptodiaptomus ashlandi) to long-term changes in temperature and resource availability and explore potential mechanisms for the responses. Increasing water temperatures (annual mean increase of 1.5 degrees C in the upper 10-m water volume) and longer stratification periods (about 4 weeks) were observed between 1962 and 2005, coincident with a pronounced decline in Leptodiaptomus densities. However, production was maintained because of an increase in the production to biomass ratio and a life cycle shift in Leptodiaptomus from an annual to a 6-month cycle. Cross-wavelet analyses demonstrated that the annual thermal forcing of copepod recruitment observed during the first two decades of the study weakened substantially, leading to more stochastic population dynamics during the past two decades. This shift from one to two generations per year was most likely produced by a longer and warmer growing period combined with changing fluctuations in resource (phytoplankton) availability. Climate change can lead to higher-frequency voltinism in ectothermic organisms and to temporal reorganization of their population dynamics
Sensory imagery in craving: From cognitive psychology to new treatments for addiction
Sensory imagery is a powerful tool for inducing craving because it is a key component of the cognitive system that underpins human motivation. The role of sensory imagery in motivation is explained by Elaborated Intrusion (EI) theory. Imagery plays an important role in motivation because it conveys the emotional qualities of the desired event, mimicking anticipated pleasure or relief, and continual elaboration of the imagery ensures that the target stays in mind. We argue that craving is a conscious state, intervening between unconscious triggers and consumption, and summarise evidence that interfering with sensory imagery can weaken cravings. We argue that treatments for addiction can be enhanced by the application of EI theory to maintain motivation, and assist in the management of craving in high-risk situations
Life at high Deborah number
In many biological systems, microorganisms swim through complex polymeric
fluids, and usually deform the medium at a rate faster than the inverse fluid
relaxation time. We address the basic properties of such life at high Deborah
number analytically by considering the small-amplitude swimming of a body in an
arbitrary complex fluid. Using asymptotic analysis and differential geometry,
we show that for a given swimming gait, the time-averaged leading-order
swimming kinematics of the body can be expressed as an integral equation on the
solution to a series of simpler Newtonian problems. We then use our results to
demonstrate that Purcell's scallop theorem, which states that time-reversible
body motion cannot be used for locomotion in a Newtonian fluid, breaks down in
polymeric fluid environments
Non-equilibrium dynamics and floral trait interactions shape extant angiosperm diversity.
Why are some traits and trait combinations exceptionally common across the tree of life, whereas others are vanishingly rare? The distribution of trait diversity across a clade at any time depends on the ancestral state of the clade, the rate at which new phenotypes evolve, the differences in speciation and extinction rates across lineages, and whether an equilibrium has been reached. Here we examine the role of transition rates, differential diversification (speciation minus extinction) and non-equilibrium dynamics on the evolutionary history of angiosperms, a clade well known for the abundance of some trait combinations and the rarity of others. Our analysis reveals that three character states (corolla present, bilateral symmetry, reduced stamen number) act synergistically as a key innovation, doubling diversification rates for lineages in which this combination occurs. However, this combination is currently less common than predicted at equilibrium because the individual characters evolve infrequently. Simulations suggest that angiosperms will remain far from the equilibrium frequencies of character states well into the future. Such non-equilibrium dynamics may be common when major innovations evolve rarely, allowing lineages with ancestral forms to persist, and even outnumber those with diversification-enhancing states, for tens of millions of years
A Sensitivity Study of Commercial Aircraft Engine Response for Emergency Situations
This paper contains the details of a sensitivity study in which the variation in a commercial aircraft engine's outputs is observed for perturbations in its operating condition inputs or control parameters. This study seeks to determine the extent to which various controller limits can be modified to improve engine performance, while capturing the increased risk that results from the changes. In an emergency, the engine may be required to produce additional thrust, respond faster, or both, to improve the survivability of the aircraft. The objective of this paper is to propose changes to the engine controller and determine the costs and benefits of the additional capabilities produced by the engine. This study indicates that the aircraft engine is capable of producing additional thrust, but at the cost of an increased risk of an engine failure due to higher turbine temperatures and rotor speeds. The engine can also respond more quickly to transient commands, but this action reduces the remaining stall margin to possibly dangerous levels. To improve transient response in landing scenarios, a control mode known as High Speed Idle is proposed that increases the responsiveness of the engine and conserves stall margi
Propulsion in a viscoelastic fluid
Flagella beating in complex fluids are significantly influenced by
viscoelastic stresses. Relevant examples include the ciliary transport of
respiratory airway mucus and the motion of spermatozoa in the mucus-filled
female reproductive tract. We consider the simplest model of such propulsion
and transport in a complex fluid, a waving sheet of small amplitude free to
move in a polymeric fluid with a single relaxation time. We show that, compared
to self-propulsion in a Newtonian fluid occurring at a velocity U_N, the sheet
swims (or transports fluid) with velocity U / U_N = [1+De^2 (eta_s)/(eta)
]/[1+De^2], where eta_s is the viscosity of the Newtonian solvent, eta is the
zero-shear-rate viscosity of the polymeric fluid, and De is the Deborah number
for the wave motion, product of the wave frequency by the fluid relaxation
time. Similar expressions are derived for the rate of work of the sheet and the
mechanical efficiency of the motion. These results are shown to be independent
of the particular nonlinear constitutive equations chosen for the fluid, and
are valid for both waves of tangential and normal motion. The generalization to
more than one relaxation time is also provided. In stark contrast with the
Newtonian case, these calculations suggest that transport and locomotion in a
non-Newtonian fluid can be conveniently tuned without having to modify the
waving gait of the sheet but instead by passively modulating the material
properties of the liquid.Comment: 21 pages, 1 figur
Propulsion System Simulation Using the Toolbox for the Modeling and Analysis of Thermodynamic System T-MATS
A simulation toolbox has been developed for the creation of both steady-state and dynamic thermodynamic software models. This paper describes the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS), which combines generic thermodynamic and controls modeling libraries with a numerical iterative solver to create a framework for the development of thermodynamic system simulations, such as gas turbine engines. The objective of this paper is to present an overview of T-MATS, the theory used in the creation of the module sets, and a possible propulsion simulation architecture. A model comparison was conducted by matching steady-state performance results from a T-MATS developed gas turbine simulation to a well-documented steady-state simulation. Transient modeling capabilities are then demonstrated when the steady-state T-MATS model is updated to run dynamically
The Effect of Faster Engine Response on the Lateral Directional Control of a Damaged Aircraft
The integration of flight control and propulsion control has been a much discussed topic, especially for emergencies where the engines may be able to help stabilize and safely land a damaged aircraft. Previous research has shown that for the engines to be effective as flight control actuators, the response time to throttle commands must be improved. Other work has developed control modes that accept a higher risk of engine failure in exchange for improved engine response during an emergency. In this effort, a nonlinear engine model (the Commercial Modular Aero-Propulsion System Simulation 40k) has been integrated with a nonlinear airframe model (the Generic Transport Model) in order to evaluate the use of enhanced-response engines as alternative yaw rate control effectors. Tests of disturbance rejection and command tracking were used to determine the impact of the engines on the aircraft's dynamical behavior. Three engine control enhancements that improve the response time of the engine were implemented and tested in the integrated simulation. The enhancements were shown to increase the engine s effectiveness as a yaw rate control effector when used in an automatic feedback loop. The improvement is highly dependent upon flight condition; the airframe behavior is markedly improved at low altitude, low speed conditions, and relatively unchanged at high altitude, high speed
Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) User's Guide
The Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) software package is an open source, MATLABSimulink toolbox (plug in) that can be used by industry professionals and academics for the development of thermodynamic and controls simulations
- …
