1,978 research outputs found
The sensing and perception subsystem of the NASA research telerobot
A useful space telerobot for on-orbit assembly, maintenance, and repair tasks must have a sensing and perception subsystem which can provide the locations, orientations, and velocities of all relevant objects in the work environment. This function must be accomplished with sufficient speed and accuracy to permit effective grappling and manipulation. Appropriate symbolic names must be attached to each object for use by higher-level planning algorithms. Sensor data and inferences must be presented to the remote human operator in a way that is both comprehensible in ensuring safe autonomous operation and useful for direct teleoperation. Research at JPL toward these objectives is described
On the edge of a new frontier: Is gerontological social work in the UK ready to meet twenty-first-century challenges?
This article is available open access through the publisher’s website. Copyright @ 2013 The Authors.This article explores the readiness of gerontological social work in the UK for meeting the challenges of an ageing society by investigating the focus on work with older people in social work education and the scope of gerontological social work research. The discussion draws on findings from two exploratory studies: a survey of qualifying master's programmes in England and a survey of the content relating to older people over a six-year period in four leading UK social work journals. The evidence from master's programmes suggests widespread neglect of ageing in teaching content and practice learning. Social work journals present a more nuanced picture. Older people emerge within coverage of generic policy issues for adults, such as personalisation and safeguarding, and there is good evidence of the complexity of need in late life. However, there is little attention to effective social work interventions, with an increasingly diverse older population, or to the quality of gerontological social work education. The case is made for infusing content on older people throughout the social work curriculum, for extending practice learning opportunities in social work with older people and for increasing the volume and reporting of gerontological social work research.Brunel Institute for Ageing Studie
Microwave Electronics
Contains reports on three research projects.U.S Navy (Office of Naval Research) under Contract Nonr-1841(49)U.S. Air Force under Air Force Contract AF19(604)-5200Lincoln Laboratory, Purchase Order DDL-B22
Microwave Electronics
Contains research objectives and reports on three research projects.U.S. Navy (Office of Naval Research) under Contract Nonr-1841(49)U.S. Air Force under Air Force Contract AF19(604)-5200Lincoln Laboratory, Purchase Order DDL-B22
Isotropic Conductivity of Two-Dimensional Three-Component Symmetric Composites
The effective dc-conductivity problem of isotropic, two-dimensional (2D),
three-component, symmetric, regular composites is considered. A simple cubic
equation with one free parameter for
is suggested whose solutions automatically have all the exactly known
properties of that function. Numerical calculations on four different
symmetric, isotropic, 2D, three-component, regular structures show a
non-universal behavior of with an
essential dependence on micro-structural details, in contrast with the
analogous two-component problem. The applicability of the cubic equation to
these structures is discussed. An extension of that equation to the description
of other types of 2D three-component structures is suggested, including the
case of random structures.
Pacs: 72.15.Eb, 72.80.Tm, 61.50.AhComment: 8 pages (two columns), 8 figures. J. Phys. A - submitte
The Case for Learned Index Structures
Indexes are models: a B-Tree-Index can be seen as a model to map a key to the
position of a record within a sorted array, a Hash-Index as a model to map a
key to a position of a record within an unsorted array, and a BitMap-Index as a
model to indicate if a data record exists or not. In this exploratory research
paper, we start from this premise and posit that all existing index structures
can be replaced with other types of models, including deep-learning models,
which we term learned indexes. The key idea is that a model can learn the sort
order or structure of lookup keys and use this signal to effectively predict
the position or existence of records. We theoretically analyze under which
conditions learned indexes outperform traditional index structures and describe
the main challenges in designing learned index structures. Our initial results
show, that by using neural nets we are able to outperform cache-optimized
B-Trees by up to 70% in speed while saving an order-of-magnitude in memory over
several real-world data sets. More importantly though, we believe that the idea
of replacing core components of a data management system through learned models
has far reaching implications for future systems designs and that this work
just provides a glimpse of what might be possible
Transcatheter interatrial shunt device for the treatment of heart failure with preserved ejection fraction (REDUCE LAP-HF I [Reduce Elevated Left Atrial Pressure in Patients With Heart Failure]): A phase 2, randomized, sham-controlled trial
Background -In non-randomized, open-label studies, a transcatheter interatrial shunt device (IASD, Corvia Medical) was associated with lower pulmonary capillary wedge pressure (PCWP), less symptoms, and greater quality of life and exercise capacity in patients with heart failure (HF) and mid-range or preserved ejection fraction (EF ≥ 40%). We conducted the first randomized, sham-controlled trial to evaluate the IASD in HF with EF ≥ 40%. Methods -REDUCE LAP-HF I was a phase 2, randomized, parallel-group, blinded multicenter trial in patients with New York Heart Association (NYHA) class III or ambulatory class IV HF, EF ≥ 40%, exercise PCWP ≥ 25 mmHg, and PCWP-right atrial pressure gradient ≥ 5 mmHg. Participants were randomized (1:1) to the IASD vs. a sham procedure (femoral venous access with intracardiac echocardiography but no IASD placement). The participants and investigators assessing the participants during follow-up were blinded to treatment assignment. The primary effectiveness endpoint was exercise PCWP at 1 month. The primary safety endpoint was major adverse cardiac, cerebrovascular, and renal events (MACCRE) at 1 month. PCWP during exercise was compared between treatment groups using a mixed effects repeated measures model analysis of covariance that included data from all available stages of exercise. Results -A total of 94 patients were enrolled, of which n=44 met inclusion/exclusion criteria and were randomized to the IASD (n=22) and control (n=22) groups. Mean age was 70±9 years and 50% were female. At 1 month, the IASD resulted in a greater reduction in PCWP compared to sham-control (P=0.028 accounting for all stages of exercise). Peak PCWP decreased by 3.5±6.4 mmHg in the treatment group vs. 0.5±5.0 mmHg in the control group (P=0.14). There were no peri-procedural or 1-month MACCRE in the IASD group and 1 event (worsening renal function) in the control group (P=1.0). Conclusions -In patients with HF and EF ≥ 40%, IASD treatment reduces PCWP during exercise. Whether this mechanistic effect will translate into sustained improvements in symptoms and outcomes requires further evaluation. Clinical Trial Registration -URL: http://clinicaltrials.gov. Unique identifier: NCT02600234
Force-Free Models of Magnetically Linked Star-Disk Systems
Disk accretion onto a magnetized star occurs in a variety of astrophysical
contexts, from young stars to X-ray pulsars. The magnetohydrodynamic
interaction between the stellar field and the accreting matter can have a
strong effect on the disk structure, the transfer of mass and angular momentum
between the disk and the star, and the production of bipolar outflows, e.g.,
plasma jets. We study a key element of this interaction - the time evolution of
the magnetic field configuration brought about by the relative rotation between
the disk and the star - using simplified, largely semianalytic, models. We
first discuss the rapid inflation and opening up of the magnetic field lines in
the corona above the accretion disk, which is caused by the differential
rotation twisting. Then we consider additional physical effects that tend to
limit this expansion, such as the effect of plasma inertia and the possibility
of reconnection in the disk's corona, the latter possibly leading to repeated
cycles in the evolution. We also derive the condition for the existence of a
steady state for a resistive disk and conclude that a steady state
configuration is not realistically possible. Finally, we generalize our
analysis of the opening of magnetic field lines by using a non-self-similar
numerical model that applies to an arbitrarily rotating (e.g. keplerian) disk.Comment: 75 pages, 22 figures, 2 tables. Submitted to Astrophysical Journa
- …
