357 research outputs found
Earthshine as an Illumination Source at the Moon
Earthshine is the dominant source of natural illumination on the surface of
the Moon during lunar night, and at locations within permanently shadowed
regions that never receive direct sunlight. As such, earthshine may enable the
exploration of areas of the Moon that are hidden from solar illumination. The
heat flux from earthshine may also influence the transport and cold trapping of
volatiles present in the very coldest areas. In this study, Earth's spectral
radiance at the Moon is examined using a suite of Earth spectral models created
using the Virtual Planetary Laboratory (VPL) three dimensional modeling
capability. At the Moon, the broadband, hemispherical irradiance from Earth
near 0 phase is approximately 0.15 watts per square meter, with comparable
contributions from solar reflectance and thermal emission. Over the simulation
timeframe, spanning two lunations, Earth's thermal irradiance changes less than
a few mW per square meter as a result of cloud variability and the
south-to-north motion of sub-observer position. In solar band, Earth's
diurnally averaged light curve at phase angles < 60 degrees is well fit using a
Henyey Greenstein integral phase function. At wavelengths > 0.7 microns, near
the well known vegetation "red edge", Earth's reflected solar radiance shows
significant diurnal modulation as a result of the longitudinal asymmetry in
projected landmass, as well as from the distribution of clouds. A simple
formulation with adjustable coefficients is presented for estimating Earth's
hemispherical irradiance at the Moon as a function of wavelength, phase angle
and sub-observer coordinates. It is demonstrated that earthshine is
sufficiently bright to serve as a natural illumination source for optical
measurements from the lunar surface.Comment: 27 pages, 15 figures, 1 tabl
Comparison of HIPWAC and Mars Express SPICAM Observations of Ozone on Mars 2006-2008 and Variation from 1993 IRHS Observations
Ozone is a tracer of photochemistry in the atmosphere of Mars and an observable used to test predictions of photochemical models. We present a comparison of retrieved ozone abundances on Mars using ground-based infrared heterodyne measurements by NASA Goddard Space Flight Center's Heterodyne Instrument for Planetary Wind And Composition (HIPWAC) and space-based Mars Express Spectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars (SPICAM) ultraviolet measurements. Ozone retrievals from simultaneous measurements in February 2008 were very consistent (0.8 microns-atm), as were measurements made close in time (ranging from less than 1 to greater than 8 microns-atm) during this period and during opportunities in October 2006 and February 2007. The consistency of retrievals from the two different observational techniques supports combining the measurements for testing photochemistry-coupled general circulation models and for investigating variability over the long-term between spacecraft missions. Quantitative comparison with ground-based measurements by NASA'GSFC's Infrared Heterodyne Spectrometer (IRHS) in 1993 reveals 2-4 times more ozone at low latitudes than in 2008 at the same season, and such variability was not evident over the shorter period of the Mars Express mission. This variability may be due to cloud activity
Ground Based Observation of Isotopic Oxygen in the Martian Atmosphere Using Infrared Heterodyne Spectroscopy
Infrared heterodyne spectra of isotopic CO2 in the Martian atmosphere were obtained using the Goddard Heterodyne Instrument for Planetary Wind and Composition, HIPWAC, which was interfaced with the 3-meter telescope at the NASA Infrared Telescope Facility- Spectra were colle cted at a resolution of lambda/delta lambda=10(exp 7). Absorption fea tures of the CO2 isotopologues have been identified from which isotop ic ratios of oxygen have been determined. The isotopic ratios O-17/O -16 and O-18/O-16 in the Martian atmosphere can be related to Martian atmospheric evolution and can be compared to isotopic ratios of oxyg en in the Earth's atmosphere. Isotopic carbon and oxygen are importa nt constraints on any theory for the erosion of the Martian primordia l atmosphere and the interaction between the atmosphere and surface o r subsurface chemical reservoirs. This investigation explored the pr esent abundance of the stable isotopes of oxygen in Mars' atmospheric carbon dioxide by measuring rovibrational line absorption in isotop ic species of CO2 using groundbased infrared heterodyne spectroscopy in the vicinity of the 9.6 micron and 10.6 micron CO2 lasing bands. T he target transitions during this observation were O-18 C-12 O-16 as well as O-178 C-12 O-16 and O-16 C-113 O-16 at higher resolving power of lambda/delta lambda=10(exp 7) and with high signal-to-noise ratio (longer integration time) in order to fully characterize the absorpt ion line profiles. The fully-resolved lineshape of both the strong n ormal-isotope and the weak isotopic CO2 lines were measured simultane ously in a single spectrum
Estimation of Orbital Neutron Detector Spatial Resolution by Systematic Shifting of Differential Topographic Masks
We present a method and preliminary results related to determining the spatial resolution of orbital neutron detectors using epithermal maps and differential topographic masks. Our technique is similar to coded aperture imaging methods for optimizing photonic signals in telescopes [I]. In that approach photon masks with known spatial patterns in a telescope aperature are used to systematically restrict incoming photons which minimizes interference and enhances photon signal to noise. Three orbital neutron detector systems with different stated spatial resolutions are evaluated. The differing spatial resolutions arise due different orbital altitudes and the use of neutron collimation techniques. 1) The uncollimated Lunar Prospector Neutron Spectrometer (LPNS) system has spatial resolution of 45km FWHM from approx. 30km altitude mission phase [2]. The Lunar Rennaissance Orbiter (LRO) Lunar Exploration Neutron Detector (LEND) with two detectors at 50km altitude evaluated here: 2) the collimated 10km FWHM spatial resolution detector CSETN and 3) LEND's collimated Sensor for Epithermal Neutrons (SETN). Thus providing two orbital altitudes to study factors of: uncollimated vs collimated and two average altitudes for their effect on fields-of-view
Probing the Distribution of Ozone on Mars
We present the application of infrared heterodyne line shapes of ozone on Mars to those produced by radiative transfer modeling of ozone profiles predicted by photochemistry-coupled general circulation models (GCM), and to contemporaneous column abundances measured by Mars Express SPICAM. Ozone is an important tracer of photochemistry in Mars' atmosphere, serving as an observable with which to test predictions of photochemical models. Infrared heterodyne measurements of ozone absorption features on Mars have been obtained at various Martian seasons from 1988 until present at the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawai'i [I]. The NASAiGoddard Space Flight Center spectrometers used were the Infrared Heterodyne Spectrometer (IRHS) [2, 3] and, since 2003, the Heterodyne Instrument for Planetary Wind and Composition (HIPWAC) [4]. A description the infrared heterodyne technique applied to ground-base observations of Martian ozone can be found in [I]. The most recent measurements on February 21-24 2008 UT at Ls=35deg were made by HIPWAC on or near the Mars Express orbital path with the goal of acquiring spectra that can be directly compared to nadir observations by SPICAM
Epithermal Neutron Evidence for a Diurnal Surface Hydration Process in the Moon's High Latitudes
We report evidence from epithermal neutron flux observations that show that the Moon's high latitude surfaces are being actively hydrated, dehydrated and rehydrated in a diurnal cycle. The near-surface hydration is indicated by an enhanced suppression of the lunar epithermal neutron leakage flux on the dayside of the dawn terminator on poleward-facing slopes (PFS). At 0600 to 0800 local-time, hydrogen concentrations within the upper 1 meter of PFS are observed to be maximized relative to equivalent equator-facing slopes (EFS). During the lunar day surface hydrogen concentrations diminish towards dusk and then rebuild overnight. Surface hydration is determined by differential comparison of the averaged EFS to PFS epithermal neutron count rates above +/- 75 deg latitude. At dawn the contrast bias towards PFS is consistent with at least 15 to 25 parts-per-million (ppm) hydrogen that dissipates by dusk. We review several lines of evidence derived from temperature and epithermal neutron data by a correlated analysis of observations from the Lunar Reconnaissance Orbiter's (LRO) Lunar Exploration Neutron Detector (LEND) that were mapped as a function of lunar local-time, Lunar Observing Laser Altimeter (LOLA) topography and Diviner (DLRE) surface temperature
Introduction: Examined Live – An Epistemological Exchange Between Philosophy and Cultural Psychology on Reflection
Besides the general agreement about the human capability of reflection, there is a large area of disagreement and debate about the nature and value of “reflective scrutiny” and the role of “second-order states” in everyday life. This problem has been discussed in a vast and heterogeneous literature about topics such as epistemic injustice, epistemic norms, agency, understanding, meta-cognition etc. However, there is not yet any extensive and interdisciplinary work, specifically focused on the topic of the epistemic value of reflection. This volume is one of the first attempts aimed at providing an innovative contribution, an exchange between philosophy, epistemology and psychology about the place and value of reflection in everyday life.
Our goal in the next sections is not to offer an exhaustive overview of recent work on epistemic reflection, nor to mimic all of the contributions made by the chapters in this volume. We will try to highlight some topics that have motivated a new resumption of this field and, with that, drawing on chapters from this volume where relevant.
Two elements defined the scope and content of this volume, on the one hand, the crucial contribution of Ernest Sosa, whose works provide original and thought-provoking contributions to contemporary epistemology in setting a new direction for old dilemmas about the nature and value of knowledge, giving a central place to reflection. On the other hand, the recent developments of cultural psychology, in the version of the “Aalborg approach”, reconsider the object and scope of psychological sciences, stressing that “[h]uman conduct is purposeful”
Preliminary Results on HAT-P-4, TrES-3, XO-2, and GJ 436 from the NASA EPOXI Mission
EPOXI (EPOCh + DIXI) is a NASA Discovery Program Mission of Opportunity using
the Deep Impact flyby spacecraft. The EPOCh (Extrasolar Planet Observation and
Characterization) Science Investigation will gather photometric time series of
known transiting exoplanet systems from January through August 2008. Here we
describe the steps in the photometric extraction of the time series and present
preliminary results of the first four EPOCh targets.Comment: 4 pages, 2 figures. To appear in the Proceedings of the 253rd IAU
Symposium: "Transiting Planets", May 2008, Cambridge, M
- …
