2,899 research outputs found
Possibility to study eta-mesic nuclei and photoproduction of slow eta-mesons at the GRAAL facility
A new experiment is proposed with the aim to study eta-mesic nuclei and
low-energy interactions of eta with nuclei. Two decay modes of eta produced by
a photon beam inside a nucleus will be observed, namely a collisional decay
\eta N \to \pi N inside the nucleus and the radiative decay \eta \to \gamma
\gamma outside. In addition, a collisional decay of stopped S_{11}(1535)
resonance inside the nucleus, S_{11}(1535) N \to N N, will be studied. The
experiment can be performed using the tagged photon beam at ESRF with the
end-point energy 1000 MeV and the GRAAL detector which includes a
high-resolution BGO calorimeter and a large acceptance lead-scintillator
time-of-flight wall. Some results of simulation and estimates of yields are
given.Comment: 20 pages, 19 figure
A new limit on the light speed isotropy from the GRAAL experiment at the ESRF
When the electrons stored in the ring of the European Synchrotron Radiation
Facility (ESRF, Grenoble) scatter on a laser beam (Compton scattering in
flight) the lower energy of the scattered electron spectra, the Compton Edge
(CE), is given by the two body photon-electron relativistic kinematics and
depends on the velocity of light. A precision measurement of the position of
this CE as a function of the daily variations of the direction of the electron
beam in an absolute reference frame provides a one-way test of Relativistic
Kinematics and the isotropy of the velocity of light. The results of GRAAL-ESRF
measurements improve the previously existing one-way limits, thus showing the
efficiency of this method and the interest of further studies in this
direction.Comment: Proceed. MG12 meeting, Paris, July, 200
Limits on light-speed anisotropies from Compton scattering of high-energy electrons
The possibility of anisotropies in the speed of light relative to the
limiting speed of electrons is considered. The absence of sidereal variations
in the energy of Compton-edge photons at the ESRF's GRAAL facility constrains
such anisotropies representing the first non-threshold collision-kinematics
study of Lorentz violation. When interpreted within the minimal Standard-Model
Extension, this result yields the two-sided limit of 1.6 x 10^{-14} at 95%
confidence level on a combination of the parity-violating photon and electron
coefficients kappa_{o+} and c. This new constraint provides an improvement over
previous bounds by one order of magnitude.Comment: 4 pages, 4 figure
Search for light-speed anisotropies using Compton scattering of high-energy electrons
Based on the high sensitivity of Compton scattering off ultra relativistic
electrons, the possibility of anisotropies in the speed of light is
investigated. The result discussed in this contribution is based on the
gamma-ray beam of the ESRF's GRAAL facility (Grenoble, France) and the search
for sidereal variations in the energy of the Compton-edge photons. The absence
of oscillations yields the two-sided limit of 1.6 x 10^{-14} at 95 % confidence
level on a combination of photon and electron coefficients of the minimal
Standard Model Extension (mSME). This new constraint provides an improvement
over previous bounds by one order of magnitude.Comment: Talk presented at the Fifth Meeting on CPT and Lorentz Symmetry,
University of Indiana, June 28-July 2, 201
Lowering the Light Speed Isotropy Limit: European Synchrotron Radiation Facility Measurements
The measurement of the Compton edge of the scattered electrons in GRAAL
facility in European Synchrotron Radiation Facility (ESRF) in Grenoble with
respect to the Cosmic Microwave Background dipole reveals up to 10 sigma
variations larger than the statistical errors. We now show that the variations
are not due to the frequency variations of the accelerator. The nature of
Compton edge variations remains unclear, thus outlining the imperative of
dedicated studies of light speed anisotropy
Effect of the intermediate velocity emissions on the quasi-projectile properties for the Ar+Ni system at 95 A.MeV
The quasi-projectile (QP) properties are investigated in the Ar+Ni collisions
at 95 A.MeV taking into account the intermediate velocity emission. Indeed, in
this reaction, between 52 and 95 A.MeV bombarding energies, the number of
particles emitted in the intermediate velocity region is related to the overlap
volume between projectile and target. Mean transverse energies of these
particles are found particularly high. In this context, the mass of the QP
decreases linearly with the impact parameter from peripheral to central
collisions whereas its excitation energy increases up to 8 A.MeV. These results
are compared to previous analyses assuming a pure binary scenario
Eta photoproduction on the neutron at GRAAL: Measurement of the differential cross section
In this contribution, we will present our first preliminary measurement of
the differential cross section for the reaction gamma+n->eta+n. Comparison of
the reactions gamma+p->eta+p for free and bound proton (D2 target) will also be
discussed.Comment: 6 pages, 4 figures, Proceedings of the 10th International Symposium
on Meson-Nucleon Physics and the Structure of the Nucleon, August
29-September 4 2004, Beijing, Chin
Measurement of eta photoproduction on the proton from threshold to 1500 MeV
Beam asymmetry and differential cross section for the reaction gamma+p->eta+p
were measured from production threshold to 1500 MeV photon laboratory energy.
The two dominant neutral decay modes of the eta meson, eta->2g and eta->3pi0,
were analyzed. The full set of measurements is in good agreement with
previously published results. Our data were compared with three models. They
all fit satisfactorily the results but their respective resonance contributions
are quite different. The possible photoexcitation of a narrow state N(1670) was
investigated and no evidence was found.Comment: 18 pages, 14 figures, 4 tables Submitted to EPJ
Photoproduction of pions and properties of baryon resonances from a Bonn-Gatchina partial wave analysis
Masses, widths and photocouplings of baryon resonances are determined in a
coupled-channel partial wave analysis of a large variety of data. The
Bonn-Gatchina partial wave formalism is extended to include a decomposition of
t- and u-exchange amplitudes into individual partial waves. The multipole
transition amplitudes for and are
given and compared to results from other analyses.Comment: 18 pages, 14 figure
Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV
A measurement of the production cross-section for top quark pairs(\ttbar)
in collisions at \sqrt{s}=7 \TeV is presented using data recorded with
the ATLAS detector at the Large Hadron Collider. Events are selected in two
different topologies: single lepton (electron or muon ) with large
missing transverse energy and at least four jets, and dilepton (,
or ) with large missing transverse energy and at least two jets. In a
data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton
topology and 9 events in the dilepton topology. The corresponding expected
backgrounds from non-\ttbar Standard Model processes are estimated using
data-driven methods and determined to be events and events, respectively. The kinematic properties of the selected events are
consistent with SM \ttbar production. The inclusive top quark pair production
cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where
the first uncertainty is statistical and the second systematic. The measurement
agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables,
CERN-PH number and final journal adde
- …
