163 research outputs found
The SERRATE protein is involved in alternative splicing in <em>Arabidopsis thaliana</em>
Howalternative splicing (AS) is regulated in plants has not yet been elucidated. Previously, we have shown that the nuclear cap-binding protein complex (AtCBC) is involved in AS in Arabidopsis thaliana. Here we show that both subunits of AtCBC (AtCBP20 and AtCBP80) interact with SERRATE (AtSE), a protein involved in the microRNA biogenesis pathway. Moreover, using a high-resolution reverse transcript-ase-polymerase chain reaction AS system we have found that AtSE influences AS in a similar way to the cap-binding complex (CBC), preferentially affecting selection of 50 splice site of first introns. The AtSE protein acts in cooperation with AtCBC: many changes observed in the mutant lacking the correct SERRATE activity were common to those observed in the cbp mutants. Interestingly, significant changes in AS of some genes were also observed in other mutants of plant microRNA biogenesis pathway, hyl1-2 and dcl1-7, but a majority of them did not cor-respond to the changes observed in the se-1mutant. Thus, the role of SERRATE in AS regulation is distinct from that of HYL1andDCL1, and is similar to the regu-lation of AS in which CBC is involved
Природный и антропогенный факторы формирования и развития культурного ландшафта Форосского парка
Цель данной статьи: на примере небольшой территории Южного берега Крыма – парка в пгт. Форос и прилегающей к нему местности – показать роль и место культурного ландшафта в формировании человеком исторического геокультурного пространства
The impact of surgical site infection—a cost analysis
Purpose: Surgical site infection (SSI) occurs in up to 25% of patients after elective laparotomy. We aimed to determine the effect of SSI on healthcare costs and patients' quality of life.
Methods: In this post hoc analysis based on the RECIPE trial, we studied a 30-day postoperative outcome of SSI in a single-center, prospective randomized controlled trial comparing subcutaneous wound irrigation with 0.04% polyhexanide to 0.9% saline after elective laparotomy. Total medical costs were analyzed accurately per patient with the tool of our corporate controlling team which is based on diagnosis-related groups in Germany.
Results: Between November 2015 and May 2018, 456 patients were recruited. The overall rate of SSI was 28.2%. Overall costs of inpatient treatment were higher in the group with SSI: median 16.685 euro; 19.703 USD (IQR 21.638 euro; 25.552 USD) vs. median 11.235 euro; 13.276 USD (IQR 11.564 euro; 13.656 USD); p < 0.001. There was a difference in surgery costs (median 6.664 euro; 7.870 USD with SSI vs. median 5.040 euro; 5.952 USD without SSI; p = 0.001) and costs on the surgical ward (median 8.404 euro; 9.924 USD with SSI vs. median 4.690 euro; 5.538 USD without SSI; p < 0.001). Patients with SSI were less satisfied with the cosmetic result (4.3% vs. 16.2%; p < 0.001). Overall costs for patients who were irrigated with saline were median 12.056 euro; 14.237 USD vs. median 12.793 euro; 15.107 USD in the polyhexanide group (p = 0.52).
Conclusion: SSI after elective laparotomy increased hospital costs substantially. This is an additional reason why the prevention of SSI is important. Overall costs for intraoperative wound irrigation with saline were comparable with polyhexanide
CMR Assessment of endothelial damage and angiogenesis in porcine coronary arteries using gadofosveset
<p>Abstract</p> <p>Background</p> <p>Endothelial damage and angiogenesis are essential for atherosclerotic plaque development and destabilization. We sought to examine whether contrast enhanced cardiovascular magnetic resonance (CMR) using gadofosveset could show endothelial damage and neovessel formation in balloon injured porcine coronary arteries.</p> <p>Methods and Results</p> <p>Data were obtained from seven pigs that all underwent balloon injury of the left anterior descending coronary artery (LAD) to induce endothelial damage and angiogenesis. Between one - 12 days (average four) after balloon injury, in vivo and ex vivo T1-weighted coronary CMR was performed after intravenous injection of gadofosveset. Post contrast, CMR showed contrast enhancement of the coronary arteries with a selective and time-dependent average expansion of the injured LAD segment area of 45% (p = 0.04; CI<sub>95 </sub>= [15%-75%]), indicating local extravasation of gadofosveset. Vascular and perivascular extravasation of albumin (marker of endothelial leakiness) and gadofosveset was demonstrated with agreement between Evans blue staining and ex vivo CMR contrast enhancement (p = 0.026). Coronary MRI contrast enhancement and local microvessel density determined by microscopic examination correlated (ρ = 0.82, p < 0.001).</p> <p>Conclusion</p> <p>Contrast enhanced coronary CMR with gadofosveset can detect experimentally induced endothelial damage and angiogenesis in the porcine coronary artery wall.</p
AGO1 and AGO2 Act Redundantly in miR408-Mediated Plantacyanin Regulation
Background: In Arabidopsis, AGO1 and AGO2 associate with small RNAs that exhibit a Uridine and an Adenosine at their 59 end, respectively. Because most plant miRNAs have a 59U, AGO1 plays many essential roles in miRNA-mediated regulation of development and stress responses. In contrast, AGO2 has only been implicated in antibacterial defense in association with miR393*, which has a 59A. AGO2 also participates in antiviral defense in association with viral siRNAs. Principal Findings: This study reveals that miR408, which has a 59A, regulates its target Plantacyanin through either AGO1 or AGO2. Indeed, neither ago1 nor ago2 single mutations abolish miR408-mediated regulation of Plantacyanin. Only an ago1 ago2 double mutant appears compromised in miR408-mediated regulation of Plantacyanin, suggesting that AGO1 and AGO2 have redundant roles in this regulation. Moreover, the nature of the 59 nucleotide of miR408 does not appear essential for its regulatory role because both a wildtype 59A-MIR408 and a mutant 59U-MIR408 gene complement a mir408 mutant. Conclusions/Significance: These results suggest that miR408 associates with both AGO1 and AGO2 based on criteria that differ from the 59 end rule, reminiscent of miR390-AGO7 and miR165/166-AGO10 associations, which are not based on the nature of the 59 nucleotide
Modeling transport and fate of riverine dissolved organic carbon in the Arctic Ocean
Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 23 (2009): GB4006, doi:10.1029/2008GB003396.The spatial distribution and fate of riverine dissolved organic carbon (DOC) in the Arctic may be significant for the regional carbon cycle but are difficult to fully characterize using the sparse observations alone. Numerical models of the circulation and biogeochemical cycles of the region can help to interpret and extrapolate the data and may ultimately be applied in global change sensitivity studies. Here we develop and explore a regional, three-dimensional model of the Arctic Ocean in which, for the first time, we explicitly represent the sources of riverine DOC with seasonal discharge based on climatological field estimates. Through a suite of numerical experiments, we explore the distribution of DOC-like tracers with realistic riverine sources and a simple linear decay to represent remineralization through microbial degradation. The model reproduces the slope of the DOC-salinity relationship observed in the eastern and western Arctic basins when the DOC tracer lifetime is about 10 years, consistent with published inferences from field data. The new empirical parameterization of riverine DOC and the regional circulation and biogeochemical model provide new tools for application in both regional and global change studies.I.M.M. and M.J.F. are
grateful to National Science Foundation for financial support
Detection of MicroRNA processing intermediates through RNA ligation approaches
MicroRNAs (miRNA) are small RNAs of 20–22 nt that regulate diverse biological pathways through the modulation of gene expression. miRNAs recognize target RNAs by base complementarity and guide them to degradation or translational arrest. They are transcribed as longer precursors with extensive secondary structures. In plants, these precursors are processed by a complex harboring DICER-LIKE1 (DCL1), which cuts on the precursor stem region to release the mature miRNA together with the miRNA*. In both plants and animals, the miRNA precursors contain spatial clues that determine the position of the miRNA along their sequences. DCL1 is assisted by several proteins, such as the double-stranded RNA binding protein, HYPONASTIC LEAVES1 (HYL1), and the zinc finger protein SERRATE (SE). The precise biogenesis of miRNAs is of utter importance since it determines the exact nucleotide sequence of the mature small RNAs and therefore the identity of the target genes. miRNA processing itself can be regulated and therefore can determine the final small RNA levels and activity. Here, we describe methods to analyze miRNA processing intermediates in plants. These approaches can be used in wild-type or mutant plants, as well as in plants grown under different conditions, allowing a molecular characterization of the miRNA biogenesis from the RNA precursor perspective.Fil: Moro, Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; ArgentinaFil: Rojas, Arantxa Maria Larisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Palatnik, Javier Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina. Universidad Nacional de Rosario. Centro de Estudios Interdisciplinarios; Argentin
Functional Specialization of the Plant miR396 Regulatory Network through Distinct MicroRNA–Target Interactions
MicroRNAs (miRNAs) are ∼21 nt small RNAs that regulate gene expression in animals and plants. They can be grouped into families comprising different genes encoding similar or identical mature miRNAs. Several miRNA families are deeply conserved in plant lineages and regulate key aspects of plant development, hormone signaling, and stress response. The ancient miRNA miR396 regulates conserved targets belonging to the GROWTH-REGULATING FACTOR (GRF) family of transcription factors, which are known to control cell proliferation in Arabidopsis leaves. In this work, we characterized the regulation of an additional target for miR396, the transcription factor bHLH74, that is necessary for Arabidopsis normal development. bHLH74 homologs with a miR396 target site could only be detected in the sister families Brassicaceae and Cleomaceae. Still, bHLH74 repression by miR396 is required for margin and vein pattern formation of Arabidopsis leaves. MiR396 contributes to the spatio-temporal regulation of GRF and bHLH74 expression during leaf development. Furthermore, a survey of miR396 sequences in different species showed variations in the 5′ portion of the miRNA, a region known to be important for miRNA activity. Analysis of different miR396 variants in Arabidopsis thaliana revealed that they have an enhanced activity toward GRF transcription factors. The interaction between the GRF target site and miR396 has a bulge between positions 7 and 8 of the miRNA. Our data indicate that such bulge modulates the strength of the miR396-mediated repression and that this modulation is essential to shape the precise spatio-temporal pattern of GRF2 expression. The results show that ancient miRNAs can regulate conserved targets with varied efficiency in different species, and we further propose that they could acquire new targets whose control might also be biologically relevant
Screening and diagnostic breast MRI: how do they impact surgical treatment? Insights from the MIPA study
Objectives: To report mastectomy and reoperation rates in women who had breast MRI for screening (S-MRI subgroup) or diagnostic (D-MRI subgroup) purposes, using multivariable analysis for investigating the role of MRI referral/nonreferral and other covariates in driving surgical outcomes. Methods: The MIPA observational study enrolled women aged 18–80 years with newly diagnosed breast cancer destined to have surgery as the primary treatment, in 27 centres worldwide. Mastectomy and reoperation rates were compared using non-parametric tests and multivariable analysis. Results: A total of 5828 patients entered analysis, 2763 (47.4%) did not undergo MRI (noMRI subgroup) and 3065 underwent MRI (52.6%); of the latter, 2441/3065 (79.7%) underwent MRI with preoperative intent (P-MRI subgroup), 510/3065 (16.6%) D-MRI, and 114/3065 S-MRI (3.7%). The reoperation rate was 10.5% for S-MRI, 8.2% for D-MRI, and 8.5% for P-MRI, while it was 11.7% for noMRI (p ≤ 0.023 for comparisons with D-MRI and P-MRI). The overall mastectomy rate (first-line mastectomy plus conversions from conserving surgery to mastectomy) was 39.5% for S-MRI, 36.2% for P-MRI, 24.1% for D-MRI, and 18.0% for noMRI. At multivariable analysis, using noMRI as reference, the odds ratios for overall mastectomy were 2.4 (p < 0.001) for S-MRI, 1.0 (p = 0.957) for D-MRI, and 1.9 (p < 0.001) for P-MRI. Conclusions: Patients from the D-MRI subgroup had the lowest overall mastectomy rate (24.1%) among MRI subgroups and the lowest reoperation rate (8.2%) together with P-MRI (8.5%). This analysis offers an insight into how the initial indication for MRI affects the subsequent surgical treatment of breast cancer. Key Points: • Of 3065 breast MRI examinations, 79.7% were performed with preoperative intent (P-MRI), 16.6% were diagnostic (D-MRI), and 3.7% were screening (S-MRI) examinations. • The D-MRI subgroup had the lowest mastectomy rate (24.1%) among MRI subgroups and the lowest reoperation rate (8.2%) together with P-MRI (8.5%). • The S-MRI subgroup had the highest mastectomy rate (39.5%) which aligns with higher-than-average risk in this subgroup, with a reoperation rate (10.5%) not significantly different to that of all other subgroups
Preoperative breast MRI positively impacts surgical outcomes of needle biopsy–diagnosed pure DCIS: a patient-matched analysis from the MIPA study
Objectives: To investigate the influence of preoperative breast MRI on mastectomy and reoperation rates in patients with pure ductal carcinoma in situ (DCIS). Methods: The MIPA observational study database (7245 patients) was searched for patients aged 18–80 years with pure unilateral DCIS diagnosed at core needle or vacuum-assisted biopsy (CNB/VAB) and planned for primary surgery. Patients who underwent preoperative MRI (MRI group) were matched (1:1) to those who did not receive MRI (noMRI group) according to 8 confounding covariates that drive referral to MRI (age; hormonal status; familial risk; posterior-to-nipple diameter; BI-RADS category; lesion diameter; lesion presentation; surgical planning at conventional imaging). Surgical outcomes were compared between the matched groups with nonparametric statistics after calculating odds ratios (ORs). Results: Of 1005 women with pure unilateral DCIS at CNB/VAB (507 MRI group, 498 noMRI group), 309 remained in each group after matching. First-line mastectomy rate in the MRI group was 20.1% (62/309 patients, OR 2.03) compared to 11.0% in the noMRI group (34/309 patients, p = 0.003). The reoperation rate was 10.0% in the MRI group (31/309, OR for reoperation 0.40) and 22.0% in the noMRI group (68/309, p < 0.001), with a 2.53 OR of avoiding reoperation in the MRI group. The overall mastectomy rate was 23.3% in the MRI group (72/309, OR 1.40) and 17.8% in the noMRI group (55/309, p = 0.111). Conclusions: Compared to those going directly to surgery, patients with pure DCIS at CNB/VAB who underwent preoperative MRI had a higher OR for first-line mastectomy but a substantially lower OR for reoperation. Clinical relevance statement: When confounding factors behind MRI referral are accounted for in the comparison of patients with CNB/VAB-diagnosed pure unilateral DCIS, preoperative MRI yields a reduction of reoperations that is more than twice as high as the increase in overall mastectomies. Key Points: • Confounding factors cause imbalance when investigating the influence of preoperative MRI on surgical outcomes of pure DCIS. • When patient matching is applied to women with pure unilateral DCIS, reoperation rates are significantly reduced in women who underwent preoperative MRI. • The reduction of reoperations brought about by preoperative MRI is more than double the increase in overall mastectomies
- …
