626 research outputs found
Spectral density of an interacting dot coupled indirectly to conducting leads
We study the spectral density of electrons rho in an interacting quantum dot
(QD) with a hybridization lambda to a non-interacting QD, which in turn is
coupled to a non-interacting conduction band. The system corresponds to an
impurity Anderson model in which the conduction band has a Lorentzian density
of states of width Delta2.
We solved the model using perturbation theory in the Coulomb repulsion U
(PTU) up to second order and a slave-boson mean-field approximation (SBMFA).
The PTU works surprisingly well near the exactly solvable limit Delta2 -> 0.
For fixed U and large enough lambda or small enough Delta2, the Kondo peak in
rho(omega) splits into two peaks. This splitting can be understood in terms of
weakly interacting quasiparticles. Before the splitting takes place the
universal properties of the model in the Kondo regime are lost. Using the
SBMFA, simple analytical expressions for the occurrence of split peaks are
obtained. For small or moderate Delta2, the side bands of rho(omega) have the
form of narrow resonances, that were missed in previous studies using the
numerical renormalization group. This technique also has shortcomings for
describing properly the split Kondo peaks. As the temperature is increased, the
intensity of the split Kondo peaks decreases, but it is not completely
suppressed at high temperatures.Comment: 13 pages, 13 figures, accepted in Phys. Rev.
Conductance through an array of quantum dots
We propose a simple approach to study the conductance through an array of
interacting quantum dots, weakly coupled to metallic leads. Using a mapping to
an effective site which describes the low-lying excitations and a slave-boson
representation in the saddle-point approximation, we calculated the conductance
through the system. Explicit results are presented for N=1 and N=3: a linear
array and an isosceles triangle. For N=1 in the Kondo limit, the results are in
very good agreement with previous results obtained with numerical
renormalization group (NRG). In the case of the linear trimer for odd , when
the parameters are such that electron-hole symmetry is induced, we obtain
perfect conductance . The validity of the approach is discussed in
detail.Comment: to appear in Phys. Rev.
Dissipation-driven superconductor-insulator transition in linear arrays of Josephson junctions capacitively coupled to metallic films
We study the low-temperature properties of linear Josephson-junction arrays
capacitively coupled to a proximate two-dimensional diffusive metal. Using
bosonization techniques, we derive an effective model for the array and obtain
its critical properties and phases at T = 0 using a renormalization group
analysis and a variational approach. While static screening effects given by
the presence of the metal can be absorbed in a renormalization of the
parameters of the array, backscattering originated in the dynamically screened
Coulomb interaction produces a non-trivial stabilization of the insulating
groundstate and can drive a superconductor-insulator transition. We study the
consequences for the transport properties in the low-temperature regime. In
particular, we calculate the resisitivity as a function of the temperature and
the parameters of the array, and obtain clear signatures of a
superconductor-insulator transition that could be observed in experiments.Comment: 10 pages, 5 figures, submitted to Physical Review
Characterization of Chicken IgY Specific to Clostridium difficile R20291 Spores and the Effect of Oral Administration in Mouse Models of Initiation and Recurrent Disease
Indexación: Web of Science; Scopus.Clostridium difficile infection (CDI) are the leading cause of world-wide nosocomial acquired diarrhea. The current main clinical challenge in CDI is the elevated rate of infection recurrence that may reach up to 30% of the patients, which has been associated to the formation of dormant spores during the infection. We sought to characterize the effects of oral administration of specific anti-spore IgY in mouse models of CDI and recurrent CDI. The specificity of anti-spore IgY was evaluated in vitro. In both, initiation mouse model and recurrence mouse model, we evaluated the prophylactic and therapeutic effect of anti-spore IgY, respectively. Our results demonstrate that anti-spore IgY exhibited high specificity and titers against C. difficile spores and reduced spore adherence to intestinal cells in vitro. Administration of anti-spore IgY to C57BL/6 mice prior and during CDI delayed the appearance of the diarrhea by 1.5 day, and spore adherence to the colonic mucosa by 90%. Notably, in the recurrence model, co-administration of anti-spore IgY coupled with vancomycin delayed the appearance of recurrent diarrhea by a median of 2 days. Collectively, these observations suggest that anti-spore IgY antibodies may be used as a novel prophylactic treatment for CDI, or in combination with antibiotics to treat CDI and prevent recurrence of the infection.https://www.frontiersin.org/articles/10.3389/fcimb.2017.00365/ful
Crystal-field effects in the mixed-valence compounds Yb2M3Ga9 (M= Rh, Ir)
Magnetic susceptibility, heat capacity, and electrical resistivity
measurements have been carried out on single crystals of the intermediate
valence compounds Yb2Rh3Ga9 and Yb2Ir3Ga9. These measurements reveal a large
anisotropy due apparently to an interplay between crystalline electric field
(CEF) and Kondo effects. The temperature dependence of magnetic susceptibility
can be modelled using the Anderson impurity model including CEF within an
approach based on the Non-Crossing Approximation.Comment: Accepted to Phys. Rev.
Dissipative phase-fluctuations in superconducting wires capacitively coupled to diffusive metals
We study the screening of the Coulomb interaction in a quasi one-dimensional
superconductor given by the presence of either a one- or a two-dimensional
non-interacting electron gas. To that end, we derive an effective low-energy
phase-only action, which amounts to treating the Coulomb and superconducting
correlations in the random-phase approximation. We concentrate on the study of
dissipation effects in the superconductor, induced by the effect of Coulomb
coupling to the diffusive density-modes in the metal, and study its
consequences on the static and dynamic conductivity. Our results point towards
the importance of the dimensionality of the screening metal in the behavior of
the superconducting plasma mode of the wire at low energies. In absence of
topological defects, and when the screening is given by a one-dimensional
electron gas, the superconducting plasma mode is completely damped in the limit
, and consequently superconductivity is lost in the wire. In contrast,
we recover a Drude-response in the conductivity when the screening is provided
by a two-dimensional electron gas.Comment: 16 pages, 8 figures, 1 table, 2 appendice
The Caveolin-1 Connection to Cell Death and Survival
Nunez, S (Nunez, S.)[ 1,4 ] 1. Fac Med, CEMC, Lab Comunicac Celulares, Santiago, Chile. 4. Univ Talca, Fac Hlth Sci, Talca, ChileCaveolins are a family of membrane proteins required for the formation of small plasma membrane invaginations called caveolae that are implicated in cellular trafficking processes. In addition to this structural role, these scaffolding proteins modulate numerous intracellular signaling pathways; often via direct interaction with specific binding partners. Caveolin-1 is particularly well-studied in this respect and has been attributed a large variety of functions. Thus, Caveolin-1 also represents the best-characterized isoform of this family with respect to its participation in cancer. Rather strikingly, available evidence indicates that Caveolin-1 belongs to a select group of proteins that function, depending on the cellular settings, both as tumor suppressor and promoter of cellular traits commonly associated with enhanced malignant behavior, such as metastasis and multi-drug resistance. The mechanisms underlying such ambiguity in Caveolin-1 function constitute an area of great interest. Here, we will focus on discussing how Caveolin-1 modulates cell death and survival pathways and how this may contribute to a better understanding of the ambiguous role this protein plays in cancer
One- and many-body effects on mirages in quantum corrals
Recent interesting experiments used scanning tunneling microscopy to study
systems involving Kondo impurities in quantum corrals assembled on Cu or noble
metal surfaces. The solution of the two-dimensional one-particle Schrodinger
equation in a hard wall corral without impurity is useful to predict the
conditions under which the Kondo effect can be projected to a remote location
(the quantum mirage). To model a soft circular corral, we solve this equation
under the potential W*delta(r-r0), where r is the distance to the center of the
corral and r0 its radius. We expand the Green's function of electron surface
states Gs0 for r<r0 as a discrete sum of contributions from single poles at
energies epsilon_i-I*delta_i. The imaginary part delta_i is the half-width of
the resonance produced by the soft confining potential, and turns out to be a
simple increasing function of epsilon_i. In presence of an impurity, we solve
the Anderson model at arbitrary temperatures using the resulting expression for
Gs0 and perturbation theory up to second order in the Coulomb repulsion U. We
calculate the resulting change in the differential conductance Delta dI/dV as a
function of voltage and space, in circular and elliptical corrals, for
different conditions, including those corresponding to recent experiments. The
main features are reproduced. The role of the direct hybridization between
impurity and bulk, the confinement potential, the size of the corral and
temperature on the intensity of the mirage are analyzed. We also calculate
spin-spin correlation functions.Comment: 13 pages, 12 figures, accepted for publication in Phys. Rev. B.
Calculations of spin correlations within an additional approximation adde
Proximity-induced superconductivity and Josephson critical current in quantum spin Hall systems
We consider recent experiments on wide superconductor-quantum spin Hall
insulator (QSHI)-superconductor Josephson junctions, which have shown
preliminary evidence of proximity-induced superconductivity at the edge-modes
of the QSHI system based on an approximate analysis of the observed Fraunhofer
spectra of the Josephson critical current as a function of the applied magnetic
field. Using a completely independent exact numerical method involving a
non-linear constrained numerical optimization, we calculate the supercurrent
profiles, comparing our results quantitatively with the experimental Fraunhofer
patterns in both HgCdTe and InAs-GaSb based QSHI Josephson junctions. Our
results show good qualitative agreement with the experiments, verifying that
the current distribution in the 2D sample indeed has peaks at the sample edges
when the system is in the QSHI phase, thus supporting the interpretation that
superconductivity has indeed been induced in the QSHI edge-modes. On the other
hand, our numerical work clearly demonstrates that it will be very difficult,
if not impossible, to obtain detailed quantitative information about the
super-current distribution just from the analysis of the Josephson Fraunhofer
spectra, and, therefore, conclusions regarding the precise width of the edge
modes or their topological nature are most likely premature at this stage.Comment: 9 pages, 6 figure
The TRUFFLE study; fetal monitoring indications for delivery in 310 IUGR infants with 2 year's outcome delivered before 32 weeks of gestation.
OBJECTIVE: In the TRUFFLE study on outcome of early fetal growth restriction women were allocated to three timing of delivery plans according to antenatal monitoring strategies based on reduced computerized cardiotocographic heart rate short term variation (c-CTG STV) , early Ductus Venosus (DV p95) or late DV (DV noA) changes. However, many infants were per protocol delivered because of 'safety net' criteria, or for maternal indications, or 'other fetal indications' or after 32 weeks of gestation when the protocol was not applied anymore. It was the objective of the present post-hoc sub-analysis to investigate the indications for delivery in relation to outcome at 2 years in infants delivered before 32 weeks, to come to a further refinement of management proposals. METHODS: we included all 310 cases of the TRUFFLE study with known outcome at 2 years corrected age and 7 perinatal and infant deaths, apart from 7 cases with an inevitable death. Data were analyzed according to the randomization allocation and specified for the intervention indication. RESULTS: overall only 32% of fetuses born alive were delivered according to the specified monitoring parameter for indication for delivery. 38% were delivered because of safety net criteria, 15% because of other fetal reasons and 15% because of maternal reasons. In the c-CTG arm 51% of infants were delivered because of reduced STV. In the DV p95 arm 34% were delivered because of an abnormal DV and in the DV no A wave arm only 10% of cases were delivered accordingly. The majority of fetuses in the DV arms delivered for safety net criteria were delivered because of spontaneous decelerations. Two year's intact survival was highest in the combined DV arms as compared to the c-CTG arm (p = 0.05 when life born, p = 0.21 including fetal death), with no difference between the DV arms. Poorer outcome in the c-CTG arm was restricted to fetuses delivered because of decelerations in the safety net subgroup. Infants delivered because of maternal reasons had the highest birth weight and a non-significant higher intact survival. CONCLUSIONS: In this sub-analysis of fetuses delivered before 32 weeks the majority of infants were delivered for other reasons than according to the allocated CTG or DV monitoring strategy. Since in the DV arms CTG criteria were used as safety net criteria, but in the c-CTG arms no DV safety net criteria were applied, we speculate that the slightly poorer outcome in the CTG arm might be explained by absence of DV data. Optimal timing of delivery of the early IUGR fetus may therefore best be achieved by monitoring them longitudinally with DV and CTG monitoring
- …
