4,624 research outputs found
Neutron irradiation effect on SiPMs up to = 5 10 cm
Silicon Photo-Multipliers (SiPM) are becoming the photo-detector of choice
for increasingly more particle detection applications, from fundamental physics
to medical and societal applications. One major consideration for their use at
high-luminosity colliders is the radiation damage induced by hadrons, which
leads to a dramatic increase of the dark count rate. KETEK SiPMs have been
exposed to various fluences of reactor neutrons up to =
510 cm (1 MeV equivalent neutrons). Results from the I-V,
and C-V measurements for temperatures between 30C and 30C
are presented. We propose a new method to quantify the effect of radiation
damage on the SiPM performance. Using the measured dark current the single
pixel occupation probability as a function of temperature and excess voltage is
determined. From the pixel occupation probability the operating conditions for
given requirements can be optimized. The method is qualitatively verified using
current measurements with the SiPM illuminated by blue LED light
A comparison of glacier melt on debris-covered glaciers in the northern and southern Caucasus
The glacier coverage in the Caucasus Mountains underwent considerable changes during the last decades. In some regions, the observed reduction in glacier area is comparable to those in the European Alps and the extent of supra-glacial debris increased on many glaciers. Only a few glaciers in the Caucasus are monitored on a regular basis, while for most areas no continuous field measurements are available. In this study, regional differences of the conditions for glacier melt with a special focus on debris covered glacier tongues in the well-studied Adyl-su basin on the northern slope of the Caucasus Mountains (Russia) is compared with the Zopkhito basin which has similar characteristics but is located on the southern slope in Georgia. The paper focuses on the effect of supra-glacial debris cover on glacier summer melt. There are systematic differences in the distribution and increase of the debris cover on the glaciers of the two basins. In the Adyl-su basin an extensive debris cover on the glacier tongues is common, however, only those glacier tongues that are positioned at the lowest elevations in the Zopkhito basin show a considerable extent of supra-glacial debris. The observed increase in debris cover is considerably stronger in the north. Field experiments show that thermal resistance of the debris cover in both basins is somewhat higher than in other glaciated regions of the world, but there is also a significant difference between the two regions. A simple ablation model accounting for the effect of debris cover on ice melt shows that melt rates are considerably higher in the northern basin despite a wider debris distribution. This difference between the two regions can be attributed to different meteorological conditions which are characterised by more frequent cloud cover and precipitation in the south. Furthermore ablation is strongly influenced by the occurrence of supra-glacial debris cover in both basins, reducing the total amount of melt on the studied glaciers by about 25 %. This effect mitigates glacier retreat in the lower sectors of the ablation zones considerably. The sensitivity to moderate changes in the debris cover, however, is rather small which implies only gradual changes of the melt regime due to debris cover dynamics during the near future
The CMS RPC gas gain monitoring system: an overview and preliminary results
The status of the CMS RPC Gas Gain Monitoring (GGM) system developed at the
Frascati Laboratory of INFN (Istituto Nazionale di Fisica Nucleare) is reported
on. The GGM system is a cosmic ray telescope based on small RPC detectors
operated with the same gas mixture used by the CMS RPC system. The GGM gain and
efficiency are continuously monitored on-line, thus providing a fast and
accurate determination of any shift in working point conditions. The
construction details and the first result of GGM commissioning are described.Comment: 8 pages, 9 figures, uses lnfprepCMS.sty, presented by L. Benussi at
RPC07, Mumbai, INDIA 200
Measurement of the analyzing powers in pd elastic and pn quasi-elastic scattering at small angles
The analyzing powers in proton-deuteron elastic and proton-neutron
quasi-elastic scattering have been measured at small angles using a polarized
proton beam at the COSY storage ring incident on an unpolarized deuterium
target. The data were taken at 796MeV and five higher energies from 1600MeV to
2400MeV. The analyzing power in pd elastic scattering was studied by detecting
the low energy recoil deuteron in telescopes placed symmetrically in the COSY
plane to the left and right of the beam whereas for pn quasi-elastic scattering
a low energy proton was registered in one of the telescopes in coincidence with
a fast scattered proton measured in the ANKE magnetic spectrometer. Though the
experiment explores new domains, the results are consistent with the limited
published information.Comment: 10 pages with 8 figure
The neutron-proton charge-exchange amplitudes measured in the dp -> ppn reaction
The unpolarised differential cross section and the two deuteron tensor
analysing powers A_{xx} and A_{yy} of the pol{d}p -> (pp)n charge-exchange
reaction have been measured with the ANKE spectrometer at the COSY storage
ring. Using deuteron beams with energies 1.2, 1.6, 1.8, and 2.27 GeV, data were
obtained for small momentum transfers to a (pp) system with low excitation
energy. The results at the three lower energies are consistent with impulse
approximation predictions based upon the current knowledge of the
neutron-proton amplitudes. However, at 2.27GeV, where these amplitudes are far
more uncertain, agreement requires a reduction in the overall double-spin-flip
contribution, with an especially significant effect in the longitudinal
direction. These conclusions are supported by measurements of the
deuteron-proton spin-correlation parameters C_{x,x} and C_{y,y} that were
carried out in the pol{d}pol{p} -> (pp)n reaction at 1.2 and 2.27GeV. The
values obtained for the proton analysing power also suggest the need for a
radical re-evaluation of the neutron-proton elastic scattering amplitudes at
the higher energy. It is therefore clear that such measurements can provide a
valuable addition to the neutron-proton database in the charge-exchange region.Comment: 13 pages with 13 figure
First measurements of spin correlations in the np -> d pi^0 reaction
The transverse spin correlations Axx and Ayy in the np-> d pi^0 reaction have
been measured for the first time in quasi-free kinematics at the COSY-ANKE
facility using a polarised deuteron beam incident on a polarised hydrogen cell
target. The results obtained for neutron energies close to 353 MeV and 600 MeV
are in good agreement with the partial wave analysis of data on the
isospin-related pp-> d pi^+ reaction, though the present results cover also the
small-angle region, which was largely absent from these data
Spin tune mapping as a novel tool to probe the spin dynamics in storage rings
Precision experiments, such as the search for electric dipole moments of
charged particles using storage rings, demand for an understanding of the spin
dynamics with unprecedented accuracy. The ultimate aim is to measure the
electric dipole moments with a sensitivity up to 15 orders in magnitude better
than the magnetic dipole moment of the stored particles. This formidable task
requires an understanding of the background to the signal of the electric
dipole from rotations of the spins in the spurious magnetic fields of a storage
ring. One of the observables, especially sensitive to the imperfection magnetic
fields in the ring is the angular orientation of stable spin axis. Up to now,
the stable spin axis has never been determined experimentally, and in addition,
the JEDI collaboration for the first time succeeded to quantify the background
signals that stem from false rotations of the magnetic dipole moments in the
horizontal and longitudinal imperfection magnetic fields of the storage ring.
To this end, we developed a new method based on the spin tune response of a
machine to artificially applied longitudinal magnetic fields. This novel
technique, called \textit{spin tune mapping}, emerges as a very powerful tool
to probe the spin dynamics in storage rings. The technique was experimentally
tested in 2014 at the cooler synchrotron COSY, and for the first time, the
angular orientation of the stable spin axis at two different locations in the
ring has been determined to an unprecedented accuracy of better than
rad.Comment: 32 pages, 15 figures, 7 table
Phase Measurement for Driven Spin Oscillations in a Storage Ring
This paper reports the first simultaneous measurement of the horizontal and
vertical components of the polarization vector in a storage ring under the
influence of a radio frequency (rf) solenoid. The experiments were performed at
the Cooler Synchrotron COSY in J\"ulich using a vector polarized, bunched
deuteron beam. Using the new spin feedback system, we
set the initial phase difference between the solenoid field and the precession
of the polarization vector to a predefined value. The feedback system was then
switched off, allowing the phase difference to change over time, and the
solenoid was switched on to rotate the polarization vector. We observed an
oscillation of the vertical polarization component and the phase difference.
The oscillations can be described using an analytical model. The results of
this experiment also apply to other rf devices with horizontal magnetic fields,
such as Wien filters. The precise manipulation of particle spins in storage
rings is a prerequisite for measuring the electric dipole moment (EDM) of
charged particles
Measurement of the Spin-Dependence of the pbar-p Interaction at the AD-Ring
We propose to use an internal polarized hydrogen storage cell gas target in
the AD ring to determine for the first time the two total spin-dependent pbar-p
cross sections sigma_1 and sigma_2 at antiproton beam energies in the range
from 50 to 450 MeV. The data obtained are of interest by themselves for the
general theory of pbar-p interactions since they will provide a first
experimental constraint of the spin-spin dependence of the nucleon-antinucleon
potential in the energy range of interest. In addition, measurements of the
polarization buildup of stored antiprotons are required to define the optimum
parameters of a future, dedicated Antiproton Polarizer Ring (APR), intended to
feed a double-polarized asymmetric pbar-p collider with polarized antiprotons.
Such a machine has recently been proposed by the PAX collaboration for the new
Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt, Germany.
The availability of an intense stored beam of polarized antiprotons will
provide access to a wealth of single- and double-spin observables, thereby
opening a new window on QCD spin physics.Comment: 51 pages, 23 figures, proposal submitted to the SPS committee of CER
- …
