2,015 research outputs found

    Photonic Crystal Cavities and Waveguides

    Get PDF
    Recently, it has also become possible to microfabricate high reflectivity mirrors by creating two- and three-dimensional periodic structures. These periodic "photonic crystals" can be designed to open up frequency bands within which the propagation of electromagnetic waves is forbidden irrespective of the propagation direction in space and define photonic bandgaps. When combined with high index contrast slabs in which light can be efficiently guided, microfabricated two-dimensional photonic bandgap mirrors provide us with the geometries needed to confine and concentrate light into extremely small volumes and to obtain very high field intensities. Here we show the use of these "artificially" microfabricated crystals in functional nonlinear optical devices, such as lasers, modulators, and waveguides

    Photonic Crystal Nanobeam Cavity Strongly Coupled to the Feeding Waveguide

    Full text link
    A deterministic design of an ultrahigh Q, wavelength scale mode volume photonic crystal nanobeam cavity is proposed and experimentally demonstrated. Using this approach, cavities with Q>10^6 and on-resonance transmission T>90% are designed. The devices fabricated in Si and capped with low-index polymer, have Q=80,000 and T=73%. This is, to the best of our knowledge, the highest transmission measured in deterministically designed, wavelength scale high Q cavities

    Phonon Networks with Silicon-Vacancy Centers in Diamond Waveguides

    Get PDF
    We propose and analyze a novel realization of a solid-state quantum network, where separated silicon-vacancy centers are coupled via the phonon modes of a quasi-one-dimensional diamond waveguide. In our approach, quantum states encoded in long-lived electronic spin states can be converted into propagating phonon wave packets and be reabsorbed efficiently by a distant defect center. Our analysis shows that under realistic conditions, this approach enables the implementation of high-fidelity, scalable quantum communication protocols within chip-scale spin-qubit networks. Apart from quantum information processing, this setup constitutes a novel waveguide QED platform, where strong-coupling effects between solid-state defects and individual propagating phonons can be explored at the quantum level

    A robust, scanning quantum system for nanoscale sensing and imaging

    Get PDF
    Controllable atomic-scale quantum systems hold great potential as sensitive tools for nanoscale imaging and metrology. Possible applications range from nanoscale electric and magnetic field sensing to single photon microscopy, quantum information processing, and bioimaging. At the heart of such schemes is the ability to scan and accurately position a robust sensor within a few nanometers of a sample of interest, while preserving the sensor's quantum coherence and readout fidelity. These combined requirements remain a challenge for all existing approaches that rely on direct grafting of individual solid state quantum systems or single molecules onto scanning-probe tips. Here, we demonstrate the fabrication and room temperature operation of a robust and isolated atomic-scale quantum sensor for scanning probe microscopy. Specifically, we employ a high-purity, single-crystalline diamond nanopillar probe containing a single Nitrogen-Vacancy (NV) color center. We illustrate the versatility and performance of our scanning NV sensor by conducting quantitative nanoscale magnetic field imaging and near-field single-photon fluorescence quenching microscopy. In both cases, we obtain imaging resolution in the range of 20 nm and sensitivity unprecedented in scanning quantum probe microscopy

    Interdisciplinary project-based learning: technology for improving student cognition

    Get PDF
    The article studies a way of enhancing student cognition by using interdisciplinary project-based learning (IPBL) in a higher education institution. IPBL is a creative pedagogic approach allowing students of one area of specialisation to develop projects for students with different academic profiles. The application of this approach in the Ural State University of Economics resulted in a computer-assisted learning system (CALS) designed by IT students. The CALS was used in an analytical chemistry course with students majoring in Commodities Management and Expertise (‘expert’ students). To test how effective the technology was, the control and experimental groups were formed. In the control group, learning was done with traditional methods. In the experimental group, it was reinforced by IPBL. A statistical analysis of the results, with an application of Pearson χ 2 test, showed that the cognitive levels in both IT and ‘expert’ experimental groups improved as compared with the control groups. The findings demonstrated that IPBL can significantly enhance learning. It can be implemented in any institution of higher or secondary education that promotes learning, including the CALS development and its use for solving problems in different subject areas

    Effects of long-term fertilization on yield of siderates and organic matter content of soil in the process of recultivation

    Get PDF
    The aim of this research was to determine the possibility of increasing organic matter content in humusless deposol topsoil and forming of a more favourable adsorptive complex by introducing green manure. Green manure biomass came from these compound plant species: winter rye + common vetch, forage pea + rapeseed mustard and Sudan grass. Compound feed was sown on degraded soil (type deposol) of the Stanari coal mine. Applied cultivation practices included primary and secondary tillage and additional plant nutrition. Mineral fertilizers were applied: NPK 7:20:30 (400 kg ha(-1)) and CAN 27% (200 kg ha(-1)). One of the treatments included addition of bentonite clay as absorbent of nutrients. During intensive vegetation the growth of the green biomass was measured, the crops were harvested, cut and ploughed in deposol topsoil. Organic matter content in deposol was determined when soil samples were taken 6 months after green manure incorporation. The results show that the mineral fertilization of siderates significantly increased green biomass yield and Sudan grass gave two cuts, which positively affected the increase of organic matter content in soil
    corecore