835 research outputs found

    Synchrotron x-ray pair distribution function: A tool to characterize cement gels

    Get PDF
    Cement matrices contain large amounts of crystalline phases jointly with amorphous and/or nanocrystalline phases. Consequently, their analyses are very challenging. Synchrotron powder diffraction in combination with the pair distribution function (PDF) methodology is very useful to characterize such complex cement pastes. This work is focused on the study of the short and medium range atomic arrangement(s) in the different nanocrystalline gels which are present in the cement pastes through total scattering Pair Distribution Function quantitative phase analyses.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Acknowledgments: We thank CELLS-ALBA (Barcelona, Spain) for providing synchrotron beam time and the financial support by BIA2014-57658-C2-1-R and BIA2014-57658-C2-2-R, which is co-funded by FEDER. We also thank Dr. Monica Dapiaggi for her contribution with the PDF study of Ca(OH)2 monolayer

    Water-to-cement ratio influence on low-carbon cements performances

    Get PDF
    Portland Cement (PC) is the most important active ingredient in most of the construction concrete. However, the PC production is associated with a high carbon dioxide release (around 1 ton of CO2 per ton of PC). One approach to reduce CO2 emissions consists on the reformulation of the clinker with less calcite demanding phases, such as, belite rich clinkers. The drawback of this kind of clinkers is the low reactivity of belite (beta-belite). In order to compensate this problem, belite rich clinkers can be prepared with ye’elimite and ferrite or with alite [known as belite-ye’elimite-ferrite (BYF) and belite-alite-ye’elimite (BAY), respectively]. In addition, it can be improved by using a high reactive belite polymorph, such as alpha-belite. In this work, the hydration and mechanical behaviour of BYF and BAY cements (with beta and/or alpha-belite) with different water-to-cement ratios have been studied. The clinkers were produced using natural raw materials, and were mixed with anhydrite (CaSO4) to prepare the corresponding cements. At early ages, the main hydration products of these cements were ettringite, calcium monosulfoaluminate and amorphous aluminium hydroxide. At later ages, stratlingite, katoite and amorphous C-S-H were found. The compressive strength values of the corresponding mortars were correlated with the mineralogy evolution of the pastes (mainly obtained by XRD and TGA).Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. I3-Ramón y Cajal Universidad de Malag

    Synchrotron Radiation Pair Distribution Function Analysis of Gels in Cements

    Get PDF
    The analysis of atomic ordering in a nanocrystalline phase with small particle sizes, below 5 nm, is intrinsically complicated because of the lack of long-range order. Furthermore, the presence of additional crystalline phase(s) may exacerbate the problem, as is the case in cement pastes. Here, we use the synchrotron pair distribution function (PDF) chiefly to characterize the local atomic order of the nanocrystalline phases, gels, in cement pastes. We have used a multi r-range analysis approach, where the ~4–7 nm r-range allows determining the crystalline phase contents; the ~1–2.5 nm r-range is used to characterize the atomic ordering in the nanocrystalline component; and the ~0.2–1.0 nm r-range gives insights about additional amorphous components. Specifically, we have prepared four alite pastes with variable water contents, and the analyses showed that a defective tobermorite, Ca11Si9O28(OH)2 8.5H2O, gave the best fit. Furthermore, the PDF analyses suggest that the calcium silicate hydrate gel is composed of this tobermorite and amorphous calcium hydroxide. Finally, this approach has been used to study alternative cements. The hydration of monocalcium aluminate and ye’elimite pastes yield aluminum hydroxide gels. PDF analyses show that these gels are constituted of nanocrystalline gibbsite, and the particle size can be as small as 2.5 nmThis work has been supported by Spanish MINECO through BIA2014-57658-C2-2-R, which is co-funded by FEDER, BIA2014-57658-C2-1-R and I3 (IEDI-2016-0079) grants. We also thank CELLS-ALBA (Barcelona, Spain) for providing synchrotron beam time at BL04-MSPD beamline. Finally, we thank Prof. Simon Billinge, Long Yang and Monica Dapiaggi for their help with the PDF script and simulations for Ca(OH)2 scattering dat

    Multiscale understanding of tricalcium silicate hydration reactions

    Get PDF
    Tricalcium silicate, the main constituent of Portland cement, hydrates to produce crystalline calcium hydroxide and calcium-silicate-hydrates (C-S-H) nanocrystalline gel. This hydration reaction is poorly understood at the nanoscale. The understanding of atomic arrangement in nanocrystalline phases is intrinsically complicated and this challenge is exacerbated by the presence of additional crystalline phase(s). Here, we use calorimetry and synchrotron X-ray powder diffraction to quantitatively follow tricalcium silicate hydration process: i) its dissolution, ii) portlandite crystallization and iii) C-S-H gel precipitation. Chiefly, synchrotron pair distribution function (PDF) allows to identify a defective clinotobermorite, Ca11Si9O28(OH)2.8.5H2O, as the nanocrystalline component of C-S-H. Furthermore, PDF analysis also indicates that C-S-H gel contains monolayer calcium hydroxide which is stretched as recently predicted by first principles calculations. These outcomes, plus additional laboratory characterization, yielded a multiscale picture for C-S-H nanocomposite gel which explains the observed densities and Ca/Si atomic ratios at the nano- and meso- scales.This work has been supported by Spanish MINECO through BIA2014-57658-C2-2-R, which is co-funded by FEDER, BIA2014-57658-C2-1-R and I3 (IEDI-2016-0079) grants. We also thank CELLS-ALBA (Barcelona, Spain) for providing synchrotron beam time at BL04-MSPD beamline

    Clinkering of calcium sulfoaluminate clinkers: polymorphism of ye'elimite

    Get PDF
    The manufacture of CSA cements is more environmentally friendly than that of OPC as it releases less CO2. This reduction depends on CSA composition and is due to three factors: i) less emissions from decarbonation in the kilns; ii) lower clinkering temperature, consequently less fuel is needed, and iii) it is easier to grind, implying a depletion in indirect emissions. CSA cements are prepared by mixing the clinker with different amounts of calcium sulfate as a set regulator. Their main performances are fast setting time (followed by a rapid hardening), good chemical resistance and, depending on the amount of the added sulfate source they can work as shrinkage controllers. CSA cements present a wide range of phase assemblages, but all of them contain over 50 wt% of ye'elimite (C4A3s) jointly with belite (C2S), tetracalcium aluminoferrite (C4AF) and other minor components such as CA, Cs, CsH2 and so on [1]. Ye'elimite is also included (~25 wt%) in BYF (Belite- Ye'elimite-Ferrite) or BAY (Belite-Alite-Ye'elimite) clinkers. Ye'elimite has a sodalite type structure with general composition, M4[T6O12]X. Stoichiometric ye'elimite crystal structure at room temperature will be described in detailed. The role of different amounts of minor elements on the synthetic procedure and crystal structures will be also presented [2,3]. This keynote will be also focused on a revision of the effect of raw materials on the mineralogical composition of CSA, BYF and BAY. Specifically, the role of main elements contents in the ye'elimite formation in these systems will be described. Moreover, the effect of minor elements on the polymorphism of both ye'elimite and belite, especially on BYF and BAY clinkers, will be presented [4,5,6].Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Spanish MINECO and FEDER [BIA2017-82391-R] research project and I3 [IEDI-2016-0079] program

    Nonlinear modal testing performed by pulsed-air jet excitation system

    Get PDF
    This paper presents a novel approach for testing structural component to nonlinear vibrations. Nowadays, nonlinear testing is mainly carried out by using electromagnetic shakers. These are efficient and powerful excitation systems which transmit the force by a rigid stinger and can be driven by different excitation signals. The rigid connection contributes to create mechanical impedance mismatch between the shaker and the test structure thus reducing the efficiency of the driving force. An alternative solution to shakers is represented by use of a pulsed air jet excitation method, which drives the force by a pulsed air-jets and therefore contactless. This condition eliminates the mechanical impedance mismatch with the test structure and the excitation can be more efficient than the one created by shakers. The pulsed air-jet excitation system is used to study nonlinear vibrations of composites components. These were designed to be mock-ups of fan blades the layup of which was varied for the three types of components used in this work. Tests were carried out by performing forced response and free decay measurements. The free decay type of test revealed interesting results and the novelty of using such an exciter for nonlinear testing. The major novelty consists of interrupting the air flow from a steady state condition and let happen the free decay, all these without experiencing undesired dynamics as experienced by contact excitatio

    Protected areas: providing natural solutions to 21st century challenges

    Get PDF
    Protected areas remain a cornerstone of global conservation efforts. The double impacts of climate change and biodiversity loss are major threats to achieving the Millennium Development Goals, especially those relating to environmental sustainability, poverty alleviation and food and water security. The growing awareness of the planet’s vulnerability to human driven changes also provides an opportunity to re-emphasize the multiple values of natural ecosystems and the services that they provide. Protected areas, when integrated into landuse plans as part of larger and connected conservation networks, offer practical, tangible solutions to the problems of both species loss and adaptation to climate change. Natural habitats make a significant contribution to mitigation by storing and sequestering carbon in vegetation and soils, and to adaptation by maintaining essential ecosystem services which help societies to respond to, and cope with climate change and other environmental challenges. Many protected areas could be justified on socioeconomic grounds alone yet their multiple goods and services are largely unrecognized in national accounting. This paper argues that there is a convincing case for greater investment in expanded and better-connected protected area systems, under a range of governance and management regimes that are specifically designed to counter the threats of climate change, increased demand and altered patterns of resource use. The new agenda for protected areas requires greater inclusivity of a broader spectrum of actors and rights holders, with growing attention to landscapes and seascapes protected by indigenous peoples, local communities, private owners and other actors which complement conservation areas managed by state agencies. Greater attention also needs to be focused on ways to integrate and mainstream protected areas into sustainable development, including promotion of “green” infrastructure as a strategic part of responses to climate change

    Pair distribution function studies in cementitious systems

    Get PDF
    The analysis of amorphous/nanocrystalline phase(s) within cement matrices that contain high amounts of crystalline phase(s) is very challenging. Synchrotron techniques can be very useful to characterize such complex samples.1 This work is focused on total scattering Pair Distribution Function (PDF) quantitative phase analyses in selected real-space ranges for a better understanding of the binding gel(s). Powder diffraction data collected in BL04-MSPD beamline have been analyzed by PDF and Rietveld methodologies to determine nanocrystalline and microcrystalline phase contents. The comparison between both methodologies allows us to have a better insight about the nanocrystalline/microcrystalline components which coexist in cement pastes. Three sets of hydrated model samples have been studied: i) monocalcium aluminate, CaAl2O4, the main component of calcium aluminate cements, ii) ye’elimite, Ca4Al6SO16, the main component of calcium sulfoaluminate cements, and iii) tricalcium silicate, Ca3SiO5, the main component of Portland cements. For the CaAl2O4 paste, the PDF fit shows that the aluminum hydroxide gel has a gibbsite local structure with an average particle size close to 5 nm.2 Figure 1 shows the final fit for CaAl2O4 paste in two different real-space regions. On the contrary, for Ca4Al6SO16 paste, it has been found that the particle size of the aluminum hydroxide gel is below 3 nm. Moreover, the Ca3SiO5 paste contains a different nanocrystalline gel, C-S-H, which has also been thoroughly studied. Different crystal structures (including Tobermorite, Clinotobermorite and Jennite) have been tested to find the structural model that fits better the experimental data. The results from this ongoing investigation will be reported and discussed.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. This work has been supported by Spanish MINECO through BIA2014-57658-C2-1-R and BIA2014-57658-C2-2-R, which is co-funded by FEDER, research grants. We also thank CELLS-ALBA for providing synchrotron beam time at BL04-MSPD

    Ice XII in its second regime of metastability

    Full text link
    We present neutron powder diffraction results which give unambiguous evidence for the formation of the recently identified new crystalline ice phase[Lobban et al.,Nature, 391, 268, (1998)], labeled ice XII, at completely different conditions. Ice XII is produced here by compressing hexagonal ice I_h at T = 77, 100, 140 and 160 K up to 1.8 GPa. It can be maintained at ambient pressure in the temperature range 1.5 < T < 135 K. High resolution diffraction is carried out at T = 1.5 K and ambient pressure on ice XII and accurate structural properties are obtained from Rietveld refinement. At T = 140 and 160 K additionally ice III/IX is formed. The increasing amount of ice III/IX with increasing temperature gives an upper limit of T ~ 150 K for the successful formation of ice XII with the presented procedure.Comment: 3 Pages of RevTeX, 3 tables, 3 figures (submitted to Physical Review Letters
    corecore