3,094 research outputs found
Erosion and deposition in interplain channels of the Maury channel system
Large turbidity currents originating on the insular margin of southern lceland have flowed clown a 2 500 km-long pathway comprising rise valleys, unchanneled plains and segments of erosional and depositional deep-sea channels that are collectively called the Maury Channel system. Two steep interplain reaches of the channel have been eut up to 100 m through volcanogenic turbidites of probable La te Pleistocene age. Near-bottom observations with side-scan sonars and profllers across the upper channels (at 59°24\u27N, 18°50\u27W, 2 750 m depth) and at the lower interplain channel (around 56°23\u27N, 24°25\u27W, 3 340 m depth) defmed their structure and morphology. The upper channels, and a tributary to the lower channel, start as broad, shallow depressions that deepen and narrow downstream. The lower channel bas a pattern of anastomosing branches that probably evolved by head ward extension of low-angle tribu taries to the original sinuous channel, and its branches are at different stages of development. Several hundred bottom photographs show well-indurated rocks on channel walls and floors, with such flysch-like characteristics as cyclic graded bedding, clastic dikes, and syndepositional deformation. The lower-channel branches have been eut by turbidity currents with speeds of 5- 12 rn/sec., and combined discharges exceeding 1 x 106 m3 /sec. Bedrock erosion in and around the channels bas proceeded by intense corrasion and fluid stressing, and is marked by such small-scale effects as rock polishing, fluting, pot-holing and ledge recession. Rockfalls have caused retreat of steep channel walls, and conglomerate or pcbbly mudstone deposits suggest that debris flows have been locally active. Sorne coarse debris delivered by these processes and clay halls torn from semi-lithifled outcrops remain in the channels, but the channel f1ll is generally thin, with a patch y veneer of pelagie mud that bas accumulated since the last major turbidity current event. The surfaces of the unconsolidated s~diment have been smoothed and lineated, or moulded into seo ur moats and occasional fields of ripples, by thermohaline currents
Radio imaging of core-dominated high redshift quasars
VLA imaging at kiloparsec-scale resolution of sixteen core-dominated
radio-loud QSOs is presented. Many objects appear to display variable radio
emission and their radio morphologies are significantly smaller than those of
steep-spectrum quasars, consistent with these objects being observed at sight
lines close to their (relativistic, 4-7) jet axes. The
usefulness of the radio source orientation indicator R_V, being defined as
ratio of radio core and rest frame optical V-band luminosity, is confirmed.Comment: 11 pages, 11 postscript figures, uses aa.cls 4.03 for LaTeX2e To
appear in Astronomy and Astrophysic
Characteristics of UGC galaxies detected by IRAS
Infrared Astronomy Satellite (IRAS) detection rates at 60 microns were determined for the Uppsala General Catalog of Galaxies (Nilson 1973; the UCG). Late-type spirals, characterized by a normal IR/B ratio of approximately 0.6, are detected to a velocity of approximately 6000 km/s for L sub B = L sub *. Contrary to the situation for IRAS-selected galaxy samples, little evidence was found for a correlation between IR/B and 60/100 microns in this large optically-selected sample. Thus a significant fraction of the IRAS-measured far-infrared flux from normal spirals must originate in the diffuse interstellar medium, heated by the interstellar radiation field. Support was not found for Burstein and Lebofsky's (1986) conclusion that spiral disks are optically thick in the far-infrared
Keck spectroscopy of z=1-3 ULIRGs from the Spitzer SWIRE survey
(Abridged) High-redshift ultra luminous infrared galaxies contribute the bulk
of the cosmic IR background and are the best candidates for very massive
galaxies in formation at z>1.5. We present Keck/LRIS optical spectroscopy of 35
z>1.4 luminous IR galaxies in the Spitzer Wide-area Infra-Red Extragalactic
survey (SWIRE) northern fields (Lockman Hole, ELAIS-N1, ELAIS-N2). The primary
targets belong to the ``IR-peak'' class of galaxies, having the 1.6 micron
(restframe) stellar feature detected in the IRAC Spitzer channels.The spectral
energy distributions of the main targets are thoroughly analyzed, by means of
spectro-photometric synthesis and multi-component fits (stars + starburst dust
+ AGN torus). The IR-peak selection technique is confirmed to successfully
select objects above z=1.4, though some of the observed sources lie at lower
redshift than expected. Among the 16 galaxies with spectroscopic redshift, 62%
host an AGN component, two thirds being type-1 and one third type-2 objects.
The selection, limited to r'<24.5, is likely biased to optically-bright AGNs.
The SEDs of non-AGN IR-peakers resemble those of starbursts (SFR=20-500
Msun/yr) hosted in massive (M>1e11 Msun) galaxies. The presence of an AGN
component provides a plausible explanation for the spectroscopic/photometric
redshift discrepancies, as the torus produces an apparent shift of the peak to
longer wavelengths. These sources are analyzed in IRAC and optical-IR color
spaces. In addition to the IR-peak galaxies, we present redshifts and spectral
properties for 150 objects, out of a total of 301 sources on slits.Comment: Accepted for publications on Astronomy and Astrophysics (acceprance
date March 8th, 2007). 33 pages. The quality of some figures have been
degrade
Spectroscopic Confirmation of a Massive Red-Sequence-Selected Galaxy Cluster at z = 1.34 in the SpARCS-South Cluster Survey
The Spitzer Adaptation of the Red-sequence Cluster Survey (SpARCS) is a
z'-passband imaging survey, consisting of deep (z' ~ 24 AB) observations made
from both hemispheres using the CFHT 3.6m and CTIO 4m telescopes. The survey
was designed with the primary aim of detecting galaxy clusters at z >~ 1. In
tandem with pre-existing 3.6um observations from the Spitzer Space Telescope
SWIRE Legacy Survey, SpARCS detects clusters using an infrared adaptation of
the two-filter red-sequence cluster technique. The total effective area of the
SpARCS cluster survey is 41.9 deg^2. In this paper, we provide an overview of
the 13.6 deg^2 Southern CTIO/MOSAICII observations. The 28.3 deg^2 Northern
CFHT/MegaCam observations are summarized in a companion paper by Muzzin et al.
(2008). In this paper, we also report spectroscopic confirmation of SpARCS
J003550-431224, a very rich galaxy cluster at z = 1.335, discovered in the
ELAIS-S1 field. To date, this is the highest spectroscopically confirmed
redshift for a galaxy cluster discovered using the red-sequence technique.
Based on nine confirmed members, SpARCS J003550-431224 has a preliminary
velocity dispersion of 1050 +/- 230 km/s. With its proven capability for
efficient cluster detection, SpARCS is a demonstration that we have entered an
era of large, homogeneously-selected z > 1 cluster surveys.Comment: 10 pages, 6 Figures, Submitted to the Ap
Clustering of galaxies at 3.6 microns in the Spitzer Wide-area Infrared Extragalactic legacy survey
We investigate the clustering of galaxies selected in the 3.6 micron band of
the Spitzer Wide-area Infrared Extragalactic (SWIRE) legacy survey. The angular
two-point correlation function is calculated for eleven samples with flux
limits of S_3.6 > 4-400 mujy, over an 8 square degree field. The angular
clustering strength is measured at >5-sigma significance at all flux limits,
with amplitudes of A=(0.49-29)\times10^{-3} at one degree, for a power-law
model, A\theta^{-0.8}. We estimate the redshift distributions of the samples
using phenomological models, simulations and photometric redshifts, and so
derive the spatial correlation lengths. We compare our results with the GalICS
(Galaxies In Cosmological Simulations) models of galaxy evolution and with
parameterized models of clustering evolution. The GalICS simulations are
consistent with our angular correlation functions, but fail to match the
spatial clustering inferred from the phenomological models or the photometric
redshifts. We find that the uncertainties in the redshift distributions of our
samples dominate the statistical errors in our estimates of the spatial
clustering. At low redshifts (median z<0.5) the comoving correlation length is
approximately constant, r_0=6.1\pm0.5h^{-1} Mpc, and then decreases with
increasing redshift to a value of 2.9\pm0.3h^{-1} Mpc for the faintest sample,
for which the median redshift is z=1. We suggest that this trend can be
attributed to a decrease in the average galaxy and halo mass in the fainter
flux-limited samples, corresponding to changes in the relative numbers of
early- and late-type galaxies. However, we cannot rule out strong evolution of
the correlation length over 0.5<z<1.Comment: 14 pages, 9 (colour) figures. Published in MNRA
Infrared-Faint Radio Sources: A New Population of High-redshift Radio Galaxies
We present a sample of 1317 Infrared-Faint Radio Sources (IFRSs) that, for
the first time, are reliably detected in the infrared, generated by
cross-correlating the Wide-Field Infrared Survey Explorer (WISE) all-sky survey
with major radio surveys. Our IFRSs are brighter in both radio and infrared
than the first generation IFRSs that were undetected in the infrared by the
Spitzer Space Telescope. We present the first spectroscopic redshifts of IFRSs,
and find that all but one of the IFRSs with spectroscopy has z > 2. We also
report the first X-ray counterparts of IFRSs, and present an analysis of radio
spectra and polarization, and show that they include Gigahertz-Peaked Spectrum,
Compact Steep Spectrum, and Ultra-Steep Spectrum sources. These results,
together with their WISE infrared colours and radio morphologies, imply that
our sample of IFRSs represents a population of radio-loud Active Galactic
Nuclei at z > 2. We conclude that our sample consists of lower-redshift
counterparts of the extreme first generation IFRSs, suggesting that the fainter
IFRSs are at even higher redshift.Comment: 23 pages, 17 figures. Submitted to MNRA
The Far-infrared Continuum of Quasars
ISO provides a key new far-infrared window through which to observe the
multi-wavelength spectral energy distributions (SEDs) of quasars and active
galactic nuclei (AGN). It allows us, for the first time, to observe a
substantial fraction of the quasar population in the far-IR, and to obtain
simultaneous, multi-wavelength observations from 5--200 microns. With these
data we can study the behavior of the IR continuum in comparison with
expectations from competing thermal and non-thermal models. A key to
determining which mechanism dominates, is the measurement of the peak
wavelength of the emission and the shape of the far-IR--mm turnover. Turnovers
which are steeper than frequency^2.5 indicate thermal dust emission in the
far-IR.
Preliminary results from our ISO data show broad, fairly smooth, IR continuum
emission with far-IR turnovers generally too steep to be explained by
non-thermal synchrotron emission. Assuming thermal emission throughout leads to
a wide inferred temperature range of 50-1000 K. The hotter material, often
called the AGN component, probably originates in dust close to and heated by
the central source, e.g. the ubiquitous molecular torus. The cooler emission is
too strong to be due purely to cool, host galaxy dust, and so indicates either
the presence of a starburst in addition to the AGN or AGN-heated dust covering
a wider range of temperatures than present in the standard, optically thick
torus models.Comment: 4 pages, to be published in the proceedings of "The Universe as Seen
by ISO," ed. M. Kessler. This and related papers can be found at
http://hea-www.harvard.edu/~ehooper/ISOkp/ISOkp.htm
- …
